Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spheroid-based engineering of a human vasculature in mice

Abstract

The complexity of the angiogenic cascade limits cellular approaches to studying angiogenic endothelial cells (ECs). In turn, in vivo assays do not allow the analysis of the distinct cellular behavior of ECs during angiogenesis. Here we show that ECs can be grafted as spheroids into a matrix to give rise to a complex three-dimensional network of human neovessels in mice. The grafted vasculature matures and is connected to the mouse circulation. The assay is highly versatile and facilitates numerous applications including studies of the effects of different cytokines on angiogenesis. Modifications make it possible to study human lymphangiogenic processes in vivo. EC spheroids can also be coimplanted with other cell types for tissue engineering purposes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of human neovasculature originating from transplanted EC spheroids.
Figure 2: Vascularization originating from luciferase-expressing HUVEC spheroids in a Matrigel-fibrin matrix containing VEGF and FGF-2 subcutaneously injected into SCID mice.
Figure 3: Analysis of VEGF- and FGF-2–induced angiogenesis.
Figure 4: Validation of antiangiogenic drugs using the VEGFR inhibitor PTK/ZK.
Figure 5: Growth of lymphatic vessels from podoplanin-positive LECs grafted as spheroids in a Matrigel-fibrin matrix.

Similar content being viewed by others

References

  1. National Cancer Institute (USA). Angiogenesis initiative fueling collaboration. Cancer Bull. 3 (9), 1–6 (2006).

  2. Ausprunk, D.H., Knighton, D.R. & Folkman, J. Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois. Role of host and preexisting graft blood vessels. Am. J. Pathol. 79, 597–628 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Korff, T., Krauss, T. & Augustin, H.G. Three-dimensional spheroidal culture of cytotrophoblast cells mimics the phenotype and differentiation of cytotrophoblasts from normal and preeclamptic pregnancies. Exp. Cell Res. 297, 415–423 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Jain, R.K., Schlenger, K., Hockel, M. & Yuan, F. Quantitative angiogenesis assays: progress and problems. Nat. Med. 3, 1203–1208 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Kenyon, B.M. et al. A model of angiogenesis in the mouse cornea. Invest. Ophthalmol. Vis. Sci. 37, 1625–1632 (1996).

    CAS  PubMed  Google Scholar 

  6. Norrby, K. In vivo models of angiogenesis. J. Cell. Mol. Med. 10, 588–612 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Passaniti, A. et al. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab. Invest. 67, 519–528 (1992).

    CAS  PubMed  Google Scholar 

  8. Korff, T. & Augustin, H.G. Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. J. Cell Biol. 143, 1341–1352 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferrara, N. VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer 2, 795–803 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Presta, M. et al. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 16, 159–178 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Grunewald, M. et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124, 175–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Drevs, J. et al. Effects of PTK787/ZK 222584, a specific inhibitor of vascular endothelial growth factor receptor tyrosine kinases, on primary tumor, metastasis, vessel density, and blood flow in a murine renal cell carcinoma model. Cancer Res. 60, 4819–4824 (2000).

    CAS  PubMed  Google Scholar 

  13. Kriehuber, E. et al. Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J. Exp. Med. 194, 797–808 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rouwkema, J., de Boer, J. & van Blitterswijk, C.A. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng. 12, 2685–2693 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Enis, D.R. et al. Induction, differentiation, and remodeling of blood vessels after transplantation of Bcl-2-transduced endothelial cells. Proc. Natl. Acad. Sci. USA 102, 425–430 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Yang, J. et al. Telomerized human microvasculature is functional in vivo. Nat. Biotechnol. 19, 219–224 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Choong, C.S., Hutmacher, D.W. & Triffitt, J.T. Co-culture of bone marrow fibroblasts and endothelial cells on modified polycaprolactone substrates for enhanced potentials in bone tissue engineering. Tissue Eng. 12, 2521–2531 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Koike, N. et al. Tissue engineering: creation of long-lasting blood vessels. Nature 428, 138–139 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Levenberg, S. et al. Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 23, 879–884 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Fischbach, C. et al. Engineering tumors with 3D scaffolds. Nat. Methods 4, 855–860 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Ford, M.C. et al. A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo. Proc. Natl. Acad. Sci. USA 103, 2512–2517 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nor, J.E. et al. Engineering and characterization of functional human microvessels in immunodeficient mice. Lab. Invest. 81, 453–463 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Skovseth, D.K., Yamanaka, T., Brandtzaeg, P., Butcher, E.C. & Haraldsen, G. Vascular morphogenesis and differentiation after adoptive transfer of human endothelial cells to immunodeficient mice. Am. J. Pathol. 160, 1629–1637 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Skovseth, D.K., Kuchler, A.M. & Haraldsen, G. The HUVEC/Matrigel assay: an in vivo assay of human angiogenesis suitable for drug validation. Methods Mol. Biol. 360, 253–268 (2007).

    CAS  PubMed  Google Scholar 

  25. Levenberg, S., Golub, J.S., Amit, M., Itskovitz-Eldor, J. & Langer, R. Endothelial cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 99, 4391–4396 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, Z.Z. et al. Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat. Biotechnol. 25, 317–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Au, P. et al. Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 111, 1302–1305 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wong, C., Inman, E., Spaethe, R. & Helgerson, S. Fibrin-based biomaterials to deliver human growth factors. Thromb. Haemost. 89, 573–582 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Alitalo, K., Tammela, T. & Petrova, T.V. Lymphangiogenesis in development and human disease. Nature 438, 946–953 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Eiselt, P. et al. Development of technologies aiding large-tissue engineering. Biotechnol. Prog. 14, 134–140 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the German Research Council (Deutsche Forschungsgemeinschaft, AU83/10-1), the European Union (LSHG-CT-2004-503573), the Austrian Science Fund (FWF S9404-B11), the State of Baden-Württemberg Kompetenznetzwerk Biomaterialien and the Fördergesellschaft der Klinik für Tumorbiologie Freiburg.

Author information

Authors and Affiliations

Authors

Contributions

A.A., A.M.L., H.W., S.C., M.H., G.B.S. and H.G.A. conceived and designed the experiments. A.A., A.M.L., H.W., A.M.B., A.B., K.I., T.K., H.Z., C.O., R.G., G.F. and M.H. performed experiments. A.A., A.M.L., H.W., M.H., S.C. and H.G.A. contributed to data analysis. A.A., A.M.L., H.W., M.H. and H.G.A. contributed to the writing of the manuscript. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to Hellmut G Augustin.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Methods (PDF 3008 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alajati, A., Laib, A., Weber, H. et al. Spheroid-based engineering of a human vasculature in mice. Nat Methods 5, 439–445 (2008). https://doi.org/10.1038/nmeth.1198

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1198

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing