Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Generation of functional hemangioblasts from human embryonic stem cells

Abstract

Recent evidence suggests the existence of progenitor cells in adult tissues that are capable of differentiating into vascular structures as well as into all hematopoietic cell lineages. Here we describe an efficient and reproducible method for generating large numbers of these bipotential progenitors—known as hemangioblasts—from human embryonic stem (hES) cells using an in vitro differentiation system. Blast cells expressed gene signatures characteristic of hemangioblasts, and could be expanded, cryopreserved and differentiated into multiple hematopoietic lineages as well as into endothelial cells. When we injected these cells into rats with diabetes or into mice with ischemia-reperfusion injury of the retina, they localized to the site of injury in the damaged vasculature and appeared to participate in repair. Injection of the cells also reduced the mortality rate after myocardial infarction and restored blood flow in hind limb ischemia in mouse models. Our data suggest that hES-derived blast cells (hES-BCs) could be important in vascular repair.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of hES-BCs.
Figure 2: Clonogenicity of blast colonies.
Figure 3: Repair of ischemic retinal vasculature in a mouse after injection of hES-BCs.
Figure 4: Incorporation of hES-BCs into the retinal vasculature of diabetic rats.
Figure 5: Endothelial differentiation in infarcted heart and in ischemic hind limb muscle after injection of hES-BCs.

Similar content being viewed by others

References

  1. Rafii, S. & Lyden, D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat. Med. 9, 702–712 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Grant, M.B. et al. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat. Med. 8, 607–612 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Bailey, A.S. et al. Transplanted adult hematopoietic stems cells differentiate into functional endothelial cells. Blood 103, 13–19 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Cogle, C.R. et al. Adult human hematopoietic cells provide functional hemangioblast activity. Blood 103, 133–135 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Otani, A. et al. Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nat. Med. 8, 1004–1010 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Crosby, J.R. et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ. Res. 87, 728–730 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Hill, J.M. et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med. 348, 593–600 (2003).

    Article  PubMed  Google Scholar 

  8. Wagner, R.C. Endothelial cell embryology and growth. Adv. Microcirc. 9, 45–75 (1980).

    Google Scholar 

  9. Park, C., Ma, Y.D. & Choi, K. Evidence for the hemangioblast. Exp. Hematol. 33, 965–970 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Loges, S. et al. Identification of the adult human hemangioblast. Stem Cells Dev. 13, 229–242 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Pelosi, E. et al. Identification of the hemangioblast in postnatal life. Blood 100, 3203–3208 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J.C. & Keller, G. A common precursor for hematopoietic and endothelial cells. Development 125, 725–732 (1998).

    CAS  PubMed  Google Scholar 

  13. Kennedy, M. et al. A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature 386, 488–493 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Kennedy, M., D'Souza, S.L., Lynch-Kattman, M., Schwantz, S. & Keller, G. Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood 109, 2679–2687 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tian, X., Morris, J.K., Linehan, J.L. & Kaufman, D.S. Cytokine requirements differ for stroma and embryoid body-mediated hematopoiesis from human embryonic stem cells. Exp. Hematol. 32, 1000–1009 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Bowles, K.M., Vallier, L., Smith, J.R., Alexander, M.R. & Pedersen, R.A. HOXB4 overexpression promotes hematopoietic development by human embryonic stem cells. Stem Cells 24, 1359–1369 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Klimanskaya, I., Chung, Y., Becker, S., Lu, S-J. & Lanza, R. Human embryonic stem-cell lines derived from single blastomeres. Nature 444, 481–485 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. D'Souza, S.L., Elefanty, A.G. & Keller, G. SCL/Tal-1 is essential for hematopoietic commitment of the hemangioblast but not for its development. Blood 105, 3862–3870 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gering, M., Yamada, Y., Rabbitts, T.H. & Patient, R.K. Lmo2 and Scl/Tal1 convert non-axial mesoderm into haemangioblasts which differentiate into endothelial cells in the absence of Gata1. Development 130, 6187–6199 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Lu, S-J., Li, F., Vida, L. & Honig, G.R. CD34+CD38- hematopoietic precursors derived from human embryonic stem cells exhibit an embryonic gene expression pattern. Blood 103, 4134–4141 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Zheng, L., Gong, B., Hatala, D.A. & Kern, T.S. Retinal ischemia and reperfusion causes capillary degeneration: similarities to diabetes 32. Invest. Ophthalmol. Vis. Sci. 48, 361–367 (2007).

    Article  PubMed  Google Scholar 

  22. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Murohara, T. et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J. Clin. Invest. 105, 1527–1536 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, Y. et al. VEGF enhances functional improvement of postinfarcted hearts by transplantation of ESC-differentiated cells. J. Appl. Physiol. 93, 1140–1151 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Dowell, J.D., Rubart, M., Pasumarthi, K.B., Soonpaa, M.H. & Field, L.J. Myocyte and myogenic stem cell transplantation in the heart. Cardiovasc. Res. 58, 336–350 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Schatteman, G.C., Hanlon, H.D., Jiao, C., Dodds, S.G. & Christy, B.A. Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J. Clin. Invest. 106, 571–578 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, L. et al. Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity 21, 31–41 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Zambidis, E.T., Peault, B., Park, T.S., Bunz, F. & Civin, C.I. Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood 106, 860–870 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Umeda, K. et al. Identification and characterization of hemoangiogenic progenitors during cynomolgus monkey embryonic stem cell differentiation. Stem Cells 24, 1348–1358 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Klimanskaya, I. & McMahon, J. Approaches of derivation and maintenance of human ES cells: Detailed procedures and alternatives. in Handbook of Stem Cells. Volume 1: Embryonic Stem Cells (eds., Lanza, R. et al.) 437–449 (Elsevier/Academic Press, San Diego, 2004).

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Y. Ivanova, S. Becker, T.Li, C. Luo, I. Klimanskaya (Advanced Cell Technology) and N. Sengupta (University of Florida) for their excellent technical assistance; The Juvenile Diabetes Research Foundation International; NIH grants EY012601; EY007739; EY14818 (to M.B.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Lanza.

Ethics declarations

Competing interests

S.J.L., Q.F. and R.L. are employees of Advanced Cell Technology (ACT), a stem cell company in the field of regenerative medicine; M.A.S.M. is on ACT's Scientific Advisory Board.

Supplementary information

Supplementary Fig. 1

Characterization of hES-BC cells derived from hES cells (PDF 166 kb)

Supplementary Fig. 2

Hematopoietic CFUs derived from hES-BC cells (PDF 126 kb)

Supplementary Fig. 3

FACS analysis of hematopoietic cells of pooled CFUs derived from hES-BC cells (PDF 158 kb)

Supplementary Fig. 4

Endothelial cells derived from hES-BC cells (PDF 119 kb)

Supplementary Fig. 5

PCR analysis of GFP sequences in GFP+ and GFP hES-BCs derived from plating mixtures of WA01-GFP+ and MA01-GFP cells (PDF 121 kb)

Supplementary Table 1

Efficiency of hES BC cells derived from different hES cell lines (PDF 60 kb)

Supplementary Methods (PDF 135 kb)

Supplementary Protocol

Protocol for culturing, differentiating and expanding hES-BC cells. (PDF 94 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, SJ., Feng, Q., Caballero, S. et al. Generation of functional hemangioblasts from human embryonic stem cells. Nat Methods 4, 501–509 (2007). https://doi.org/10.1038/nmeth1041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth1041

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing