Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer

Abstract

We observed quantized plasmon quenching dips in resonant Rayleigh scattering spectra by plasmon resonance energy transfer (PRET) from a single nanoplasmonic particle to adsorbed biomolecules. This label-free biomolecular absorption nanospectroscopic method has ultrahigh molecular sensitivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagrams of quantized plasmon quenching dips nanospectroscopy via PRET.
Figure 2: Experimental results of PRET from single gold nanoparticle to conjugated cytochrome c molecules.
Figure 3: The PRET spectra for three representative gold nanoparticles conjugated with reduced cytochrome c molecules.

Similar content being viewed by others

References

  1. Bohren, C.F. & Huffman, D.R. Absorption and Scattering of Light by Small Particles 335–336 (Wiley, New York, 1998).

    Book  Google Scholar 

  2. Moskovits, M. Rev. Mod. Phys. 57, 783–826 (1985).

    Article  CAS  Google Scholar 

  3. Lombardi, J.R., Birke, R.L., Lu, T.H. & Xu, J. J. Chem. Phys. 84, 4174–4180 (1986).

    Article  CAS  Google Scholar 

  4. Nie, S. & Emory, S.R. Science 275, 1102–1106 (1997).

    Article  CAS  Google Scholar 

  5. Futamata, M., Maruyama, Y. & Ishikawa, M. J. Phys. Chem. B 108, 13119–13127 (2004).

    Article  CAS  Google Scholar 

  6. Das, P. & Metiu, H. J. Phys. Chem. 89, 4680–4687 (1985).

    Article  CAS  Google Scholar 

  7. Andrew, P. & Barnes, W.L. Science 306, 1002–1005 (2004).

    Article  CAS  Google Scholar 

  8. Boussaad, S., Pean, J. & Tao, N.J. Anal. Chem. 72, 222–226 (2000).

    Article  CAS  Google Scholar 

  9. Haes, A.J., Zou, S., Zhao, J., Schatz, G.C. & Van Duyne, R.P. J. Am. Chem. Soc. 128, 10905–10914 (2006).

    Article  CAS  Google Scholar 

  10. Wuttke, D.S., Bjerrum, M.J., Winkler, J.R. & Gray, H.B. Science 256, 1007–1009 (1992).

    Article  CAS  Google Scholar 

  11. Lange, C. & Hunte, C. Proc. Natl. Acad. Sci. USA 99, 2800–2805 (2002).

    Article  CAS  Google Scholar 

  12. Liu, G.L. et al. Nature Nanotechnol. 1, 47–52 (2006).

    Article  CAS  Google Scholar 

  13. Rascheke, G. et al. Nano Lett. 3, 935–938 (2003).

    Article  Google Scholar 

  14. Ambjornsson, T., Mukhopadhyay, G., Apell, S.P. & Kall, M. Phys. Rev. B 73, 085412 (2006).

    Article  Google Scholar 

  15. Romero, M.J., van de Lagemaat, J., Mora-Sero, I., Rumbles, G. & Al-Jasslm, M.M. Nano Lett. 6, 2833–2837 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant (05K1501-02810) from 'Center for Nanostructured Materials Technology' under '21st Century Frontier R&D Programs' of the Ministry of Science and Technology, Korea.

Author information

Authors and Affiliations

Authors

Contributions

G.L.L. discovered the new finding, conceived the idea and performed the measurements, Y.-T.L. conceived the idea, initiated the experiment, performed the measurements and processed the data, Y.C. repeated the experiments and designed additional experiments, T.K. improved the conjugation chemistry and repeated the experiments, and L.P.L. conceived the idea, designed the experiments and advised other authors.

Corresponding author

Correspondence to Luke P Lee.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Methods (PDF 1176 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Long, YT., Choi, Y. et al. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nat Methods 4, 1015–1017 (2007). https://doi.org/10.1038/nmeth1133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth1133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing