Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Npro fusion technology to produce proteins with authentic N termini in E. coli

Abstract

We describe a prokaryotic expression system using the autoproteolytic function of Npro from classical swine fever virus. Proteins or peptides expressed as Npro fusions are deposited as inclusion bodies. On in vitro refolding by switching from chaotropic to kosmotropic conditions, the fusion partner is released from the C-terminal end of the autoprotease by self-cleavage, leaving the target protein with an authentic N terminus. A tailor-made Npro mutant called EDDIE, with increased in vitro and decreased in vivo cleavage rates, has enabled us to express proinsulin, domain-D of staphylococcal protein A, hepcidin, interferon-α1, keratin-associated protein 10-4, green fluorescent protein, inhibitorial peptide of senescence-evasion-factor, monocyte chemoattractant protein-1 and toxic gyrase inhibitor, among others. This Npro expression system can be used as a generic tool for the high-level production of recombinant toxic peptides and proteins (up to 12 g/l) in Escherichia coli without the need for chemical or enzymatic removal of the fusion tag.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein expression by the Npro system.
Figure 2: Expression of Npro fusion proteins and peptides.
Figure 3: EDDIE shows improved refolding properties relative to Npro.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Georgiou, G. & Valax, P. Isolating inclusion bodies from bacteria. Methods Enzymol. 309, 48–58 (1999).

    Article  CAS  Google Scholar 

  2. Jungbauer, A. & Kaar, W. Current status of technical protein refolding. J. Biotechnol. 128, 587–596 (2007).

    Article  CAS  Google Scholar 

  3. Sandman, K., Grayling, R.A. & Reeve, J.N. Improved N-terminal processing of recombinant proteins synthesized in Escherichia coli. Bio/Technology 13, 504–506 (1995).

    CAS  PubMed  Google Scholar 

  4. Adams, J.M. On the release of the formyl group from nascent protein. J. Mol. Biol. 33, 571–589 (1968).

    Article  CAS  Google Scholar 

  5. Yem, A.W., Richard, K.A., Staite, N.D. & Deibel, M.R., Jr. Resolution and biological properties of three N-terminal analogues of recombinant human interleukin-1β. Lymphokine Res. 7, 85–92 (1988).

    CAS  PubMed  Google Scholar 

  6. Hannig, G. & Makrides, S.C. Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol. 16, 54–60 (1998).

    Article  CAS  Google Scholar 

  7. Arnau, J., Lauritzen, C., Petersen, G.E. & Pedersen, J. Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr. Purif. 48, 1–13 (2006).

    Article  CAS  Google Scholar 

  8. Jenny, R.J., Mann, K.G. & Lundblad, R.L. A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa. Protein Expr. Purif. 31, 1–11 (2003).

    Article  CAS  Google Scholar 

  9. Liew, O.W., Ching Chong, J.P., Yandle, T.G. & Brennan, S.O. Preparation of recombinant thioredoxin fused N-terminal proCNP: Analysis of enterokinase cleavage products reveals new enterokinase cleavage sites. Protein Expr. Purif. 41, 332–340 (2005).

    Article  CAS  Google Scholar 

  10. Banki, M.R. & Wood, D.W. Inteins and affinity resin substitutes for protein purification and scale up. Microb. Cell Fact. 4, 32 (2005).

    Article  Google Scholar 

  11. Wood, D.W., Wu, W., Belfort, G., Derbyshire, V. & Belfort, M. A genetic system yields self-cleaving inteins for bioseparations. Nat. Biotechnol. 17, 889–892 (1999).

    Article  CAS  Google Scholar 

  12. Chong, S., Williams, K.S., Wotkowicz, C. & Xu, M.Q. Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein. J. Biol. Chem. 273, 10567–10577 (1998).

    Article  CAS  Google Scholar 

  13. Wood, D.W. et al. Optimized single-step affinity purification with a self-cleaving intein applied to human acidic fibroblast growth factor. Biotechnol. Prog. 16, 1055–1063 (2000).

    Article  CAS  Google Scholar 

  14. Stark, R., Meyers, G., Rumenapf, T. & Thiel, H.J. Processing of pestivirus polyprotein: cleavage site between autoprotease and nucleocapsid protein of classical swine fever virus. J. Virol. 67, 7088–7095 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Achmuller, C., Werther, F., Wechner, P. & Auer, B. Synthesis of genes with multiple identical domains. Biotechniques 42, 43–44, 46 (2007).

    Article  CAS  Google Scholar 

  16. Hilton, L. et al. The Npro product of bovine viral diarrhea virus inhibits DNA binding by interferon regulatory factor 3 and targets it for proteasomal degradation. J. Virol. 80, 11723–11732 (2006).

    Article  CAS  Google Scholar 

  17. Chong, S. et al. Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. Nucleic Acids Res. 26, 5109–5115 (1998).

    Article  CAS  Google Scholar 

  18. Malakhov, M.P. et al. SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J. Struct. Funct. Genomics 5, 75–86 (2004).

    Article  CAS  Google Scholar 

  19. Reischer, H., Schotola, I., Striedner, G., Potschacher, F. & Bayer, K. Evaluation of the GFP signal and its aptitude for novel on-line monitoring strategies of recombinant fermentation processes. J. Biotechnol. 108, 115–125 (2004).

    Article  CAS  Google Scholar 

  20. Waldo, G.S., Standish, B.M., Berendzen, J. & Terwilliger, T.C. Rapid protein-folding assay using green fluorescent protein. Nat. Biotechnol. 17, 691–695 (1999).

    Article  CAS  Google Scholar 

  21. Cui, C., Zhao, W., Chen, J., Wang, J. & Li, Q. Elimination of in vivo cleavage between target protein and intein in the intein-mediated protein purification systems. Protein Expr. Purif. 50, 74–81 (2006).

    Article  CAS  Google Scholar 

  22. Király, O. et al. Expression of human cationic trypsinogen with an authentic N terminus using intein-mediated splicing in aminopeptidase P deficient Escherichia coli. Protein Expr. Purif. 48, 104–111 (2006).

    Article  Google Scholar 

  23. Shi, J. & Muir, T.W. Development of a tandem protein trans-splicing system based on native and engineered split inteins. J. Am. Chem. Soc. 127, 6198–6206 (2005).

    Article  CAS  Google Scholar 

  24. Sharma, S.S., Chong, S. & Harcum, S.W. Intein-mediated protein purification of fusion proteins expressed under high-cell density conditions in E. coli. J. Biotechnol. 125, 48–56 (2006).

    Article  CAS  Google Scholar 

  25. Kiefhaber, T., Rudolph, R., Kohler, H.H. & Buchner, J. Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation. Bio/Technology 9, 825–829 (1991).

    CAS  PubMed  Google Scholar 

  26. Zhang, H., Yuan, Q., Zhu, Y. & Ma, R. Expression and preparation of recombinant hepcidin in Escherichia coli. Protein Expr. Purif. 41, 409–416 (2005).

    Article  CAS  Google Scholar 

  27. Yaron, A. & Mlynar, D. Aminopeptidase-P. Biochem. Biophys. Res. Commun. 32, 658–663 (1968).

    Article  CAS  Google Scholar 

  28. Bentley, W.E., Mirjalili, N., Andersen, D.C., Davis, R.H. & Kompala, D.S. Plasmid-encoded protein: The principal factor in the 'metabolic burden' associated with recombinant bacteria. Biotechnol. Bioeng. 35, 668–681 (1990).

    Article  CAS  Google Scholar 

  29. Samuelsson, E. & Uhlen, M. Chaperone-like effect during in vitro refolding of insulin-like growth factor I using a solubilizing fusion partner. Ann. NY Acad. Sci. 782, 486–494 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the contributions of Sandoz GmbH (P. Alliger, M. Frank, K. Graumann, F. Hochholdinger, S. Keller, B. Knorr, A. Krämer, A. Plematl, D. Serp, G. Stoller and W. Walcher). We thank M. Gudelj-Wyletal, D. Keller and M. Füreder (Boehringer Ingelheim Austria) for expression vector construction, fermentation and refolding development of 6His-EDDIE-rhMCP-1; the group of Herbert Lindner for N-terminal sequencing; D. Kolarich for mass spectrometric analysis; H. Zoller for cooperation concerning Hepcidin; and R. Schneider for discussion and ideas. This work was performed within the Austrian Center of Biopharmaceutical Technology (ACBT) a competence center funded by the Austrian Ministry of Economics and Labor, the federal states of Vienna and Tyrol and by its industrial partners Sandoz GmbH and Boehringer Ingelheim Austria GmbH.

Author information

Authors and Affiliations

Authors

Contributions

C.A., P.W. and F.W. optimized the Npro fusion concept, generated mutants and fusion proteins, and examined in vivo and in vitro cleavage. W.K., K.A., R.H. and H.S. analyzed in vitro refolding of fusion proteins, determined the kinetic constants of the cleavage reaction, and developed protein purification methods. G.S., M.C.-P., and F.C. performed fermentations of Npro fusions. C.A., K.A. and R.H. drafted the manuscript. B.A., A.J. and K.B. were responsible for the concept of expression and processing heterologous proteins in E. coli in fusion with Npro and revised the manuscript.

Corresponding author

Correspondence to Bernhard Auer.

Ethics declarations

Competing interests

P. W. and F. W. are employees of Sandoz GmbH (Kundl, Austria) and H. S. of Boehringer Ingelheim Austria GmbH (Vienna). Npro-fusion technology is proprietary to Boehringer Ingelheim Austria GmbH and Sandoz GmbH, but will be available for research purposes upon signing a license agreement and sending it back to the corresponding author. A respective form is available online (Supplementary Note).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–2, Supplementary Methods, Supplementary Protocol (PDF 826 kb)

Supplementary Note

Material Transfer and Research License Agreement (DOC 101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achmüller, C., Kaar, W., Ahrer, K. et al. Npro fusion technology to produce proteins with authentic N termini in E. coli. Nat Methods 4, 1037–1043 (2007). https://doi.org/10.1038/nmeth1116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth1116

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing