Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA

Abstract

Methods for the site-specific incorporation of extra components into nucleic acids can be powerful tools for creating DNA and RNA molecules with increased functionality. We present an unnatural base pair system in which DNA containing an unnatural base pair can be amplified and function as a template for the site-specific incorporation of base analog substrates into RNA via transcription. The unnatural base pair is formed by specific hydrophobic shape complementation between the bases, but lacks hydrogen bonding interactions. In replication, this unnatural base pair exhibits high selectivity in combination with the usual triphosphates and modified triphosphates, γ-amidotriphosphates, as substrates of 3′ to 5′ exonuclease-proficient DNA polymerases, allowing PCR amplification. In transcription, the unnatural base pair complementarity mediates the incorporation of these base substrates and their analogs, such as a biotinylated substrate, into RNA by T7 RNA polymerase (RNAP). With this system, functional components can be site-specifically incorporated into a large RNA molecule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An unnatural base pair system for specific replication and transcription.
Figure 2: Single-nucleotide insertion and primer extension with the Ds-Pa base pair system.
Figure 3: DNA sequencing and PCR amplification of the DNA fragments containing the Ds-Pa pair.
Figure 4: Site-specific biotinylation of RNA molecules by T7 transcription using the Ds-Pa pair.

Similar content being viewed by others

References

  1. Benner, S.A., Burgstaller, P., Battersby, T.R. & Jurczyk, S. Did the RNA world exploit an expanded genetic alphabet? in The RNA World (eds. Gesteland, R.F., Cech, T.R. & Atkins, J.F.) 163–181 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1999).

  2. Henry, A.A. & Romesberg, F.E. Beyond A, C, G and T: augmenting nature's alphabet. Curr. Opin. Chem. Biol. 7, 727–733 (2003).

    Article  CAS  Google Scholar 

  3. Moser, M.J. & Prudent, J.R. Enzymatic repair of an expanded genetic information system. Nucleic Acids Res. 31, 5048–5053 (2003).

    Article  CAS  Google Scholar 

  4. Piccirilli, J.A., Krauch, T., Moroney, S.E. & Benner, S.A. Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature 343, 33–37 (1990).

    Article  CAS  Google Scholar 

  5. Switzer, C.Y., Moroney, S.E. & Benner, S.A. Enzymatic recognition of the base pair between isocytidine and isoguanosine. Biochemistry 32, 10489–10496 (1993).

    Article  CAS  Google Scholar 

  6. Sismour, A.M. et al. PCR amplification of DNA containing non-standard base pairs by variants of reverse transcriptase from Human Immunodeficiency Virus-1. Nucleic Acids Res. 32, 728–735 (2004).

    Article  CAS  Google Scholar 

  7. Johnson, S.C., Sherrill, C.B., Marshall, D.J., Moser, M.J. & Prudent, J.R. A third base pair for the polymerase chain reaction: inserting isoC and isoG. Nucleic Acids Res. 32, 1937–1941 (2004).

    Article  CAS  Google Scholar 

  8. Sismour, A.M. & Benner, S.A. The use of thymidine analogs to improve the replication of an extra DNA base pair: a synthetic biological system. Nucleic Acids Res. 33, 5640–5646 (2005).

    Article  CAS  Google Scholar 

  9. Tor, Y. & Dervan, P.B. Site-specific enzymatic incorporation of an unnatural base, N6-(6-aminohexyl)isoguanosine, into RNA. J. Am. Chem. Soc. 115, 4461–4467 (1993).

    Article  CAS  Google Scholar 

  10. Fujiwara, T., Kimoto, M., Sugiyama, H., Hirao, I. & Yokoyama, S. Synthesis of 6-(2-thienyl)purine nucleoside derivatives that form unnatural base pairs with pyridin-2–one nucleosides. Bioorg. Med. Chem. Lett. 11, 2221–2223 (2001).

    Article  CAS  Google Scholar 

  11. Hirao, I. et al. An unnatural base pair for incorporating amino acid analogs into proteins. Nat. Biotechnol. 20, 177–182 (2002).

    Article  CAS  Google Scholar 

  12. Kimoto, M. et al. Site-specific incorporation of a photo-crosslinking component into RNA by T7 transcription mediated by unnatural base pairs. Chem. Biol. 11, 47–55 (2004).

    Article  CAS  Google Scholar 

  13. Moriyama, K., Kimoto, M., Mitsui, T., Yokoyama, S. & Hirao, I. Site-specific biotinylation of RNA molecules by transcription using unnatural base pairs. Nucleic Acids Res. 33, e129 (2005).

    Article  Google Scholar 

  14. Kawai, R. et al. Site-specific fluorescent labeling of RNA molecules by specific transcription using unnatural base pairs. J. Am. Chem. Soc. 127, 17286–17295 (2005).

    Article  CAS  Google Scholar 

  15. Morales, J.C. & Kool, E.T. Efficient replication between non-hydrogen-bonded nucleoside shape analogs. Nat. Struct. Biol. 5, 950–954 (1998).

    Article  CAS  Google Scholar 

  16. McMinn, D.L. et al. Efforts toward expansion of the genetic alphabet: DNA polymerase recognition of a highly stable, self-pairing hydrophobic base. J. Am. Chem. Soc. 121, 11585–11586 (1999).

    Article  CAS  Google Scholar 

  17. Wu, Y. et al. Efforts toward expansion of the genetic alphabet: optimization of interbase hydrophobic interactions. J. Am. Chem. Soc. 122, 7621–7632 (2000).

    Article  CAS  Google Scholar 

  18. Matray, T.J. & Kool, E.T. A specific partner for abasic damage in DNA. Nature 399, 704–708 (1999).

    Article  CAS  Google Scholar 

  19. Doublié, S., Tabor, S., Long, A.M., Richardson, C.C. & Elenberger, T. Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature 391, 251–258 (1998).

    Article  Google Scholar 

  20. Kiefer, J.R., Mao, C., Braman, J.C. & Beese, L.S. Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature 391, 304–307 (1998).

    Article  CAS  Google Scholar 

  21. Mitsui, T. et al. An unnatural hydrophobic base pair with shape complementarity between pyrrole-2-carbaldehyde and 9-methylimidazo[(4,5)-b]pyridine. J. Am. Chem. Soc. 125, 5298–5307 (2003).

    Article  CAS  Google Scholar 

  22. Morales, J.C. & Kool, E.T. Minor groove interactions between polymerase and DNA: More essential to replication than Watson-Crick hydrogen bonds? J. Am. Chem. Soc. 121, 2323–2324 (1999).

    Article  CAS  Google Scholar 

  23. Hirao, I. et al. A two-unnatural-base-pair system toward the expansion of the genetic code. J. Am. Chem. Soc. 126, 13298–13305 (2004).

    Article  CAS  Google Scholar 

  24. Petruska, J. et al. Comparison between DNA melting thermodynamics and DNA polymerase fidelity. Proc. Natl. Acad. Sci. USA 85, 6252–6256 (1988).

    Article  CAS  Google Scholar 

  25. Goodman, M.F., Creighton, S., Bloom, L.B. & Petruska, J. Biochemical basis of DNA replication fidelity. Crit. Rev. Biochem. Mol. Biol. 28, 83–126 (1993).

    Article  CAS  Google Scholar 

  26. Kimoto, M., Yokoyama, S. & Hirao, I. A quantitative, non-radioactive single-nucleotide insertion assay for analysis of DNA replication fidelity by using an automated DNA sequencer. Biotechnol. Lett. 26, 999–1005 (2004).

    Article  CAS  Google Scholar 

  27. Mitsui, T., Kimoto, M., Sato, A., Yokoyama, S. & Hirao, I. An unnatural hydrophobic base, 4-propynylpyrrole-2-carbaldehyde, as an efficient pairing partner of 9-methylimidazo[(4,5)-b]pyridine. Bioorg. Med. Chem. Lett. 13, 4515–4518 (2003).

    Article  CAS  Google Scholar 

  28. Mulder, B.A. et al. Nucleotide modification at the γ-phosphate leads to the improved fidelity of HIV-1 reverse transcriptase. Nucleic Acids Res. 33, 4865–4873 (2005).

    Article  CAS  Google Scholar 

  29. Leconte, A.M., Chen, L. & Romesberg, F.E. Polymerase evolution: Efforts toward expansion of the genetic code. J. Am. Chem. Soc. 127, 12470–12471 (2005).

    Article  CAS  Google Scholar 

  30. Chelliserrykattil, J. & Ellington, A.D. Evolution of a T7 RNAP variant that transcribes 2′-O-methyl RNA. Nat. Biotechnol. 22, 1155–1160 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the RIKEN Structural Genomics/Proteomics Initiative, the National Project on Protein Structural and Functional Analyses, Ministry of Education, Culture, Sports, Science and Technology of Japan, by a Grant-in-Aid for Scientific Research (KAKENHI 15350097), and by the Program of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NIBIO).

Author information

Authors and Affiliations

Authors

Contributions

I.H. conceived and designed the study, supervised the work and prepared samples; M.K. contributed to the biological idea and performed experiments; T.M., T.F. and A.S. performed chemical synthesis; R.K. and Y.H. performed biological experiments; S.Y. conceived the study and supervised the work.

Note: Supplementary information is available on the Nature Methods website.

Corresponding authors

Correspondence to Ichiro Hirao or Shigeyuki Yokoyama.

Ethics declarations

Competing interests

I.H. and S.Y. have filed a patent in Japan (2005-356883) covering some of the information described in this article.

Supplementary information

Supplementary Fig. 1

Dye terminator sequencing of the PCR production from DNA1. (PDF 689 kb)

Supplementary Fig. 2

Dye terminator sequencing of the PCR production from DNA fragments. (PDF 2520 kb)

Supplementary Fig. 3

T7 transcription mediated by the Ds-Pa pairing. (PDF 98 kb)

Supplementary Table 1

Steady-state kinetic parameters for insertion of single nucleotides into a template-primer duplex. (PDF 151 kb)

Supplementary Table 2

Nucleotide-composition analysis of T7 transcripts. (PDF 153 kb)

Supplementary Methods (PDF 312 kb)

Supplementary Discussion (PDF 25 kb)

Supplementary Data (PDF 837 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirao, I., Kimoto, M., Mitsui, T. et al. An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA. Nat Methods 3, 729–735 (2006). https://doi.org/10.1038/nmeth915

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth915

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing