Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein ligation: an enabling technology for the biophysical analysis of proteins

Abstract

Biophysical techniques such as fluorescence spectroscopy and nuclear magnetic resonance (NMR) spectroscopy provide a window into the inner workings of proteins. These approaches make use of probes that can either be naturally present within the protein or introduced through a labeling procedure. In general, the more control one has over the type, location and number of probes in a protein, then the more information one can extract from a given biophysical analysis. Recently, two related approaches have emerged that allow proteins to be labeled with a broad range of physical probes. Expressed protein ligation (EPL) and protein trans-splicing (PTS) are both intein-based approaches that permit the assembly of a protein from smaller synthetic and/or recombinant pieces. Here we provide some guidelines for the use of EPL and PTS, and highlight how the dovetailing of these new protein chemistry methods with standard biophysical techniques has improved our ability to interrogate protein function, structure and folding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of expressed protein ligation (EPL).
Figure 2: Principle of protein trans-splicing (PTS).
Figure 3: Selected applications of protein ligation technologies.

Similar content being viewed by others

References

  1. Hahn, M.E. & Muir, T.W. Manipulating proteins with chemistry: a cross-section of chemical biology. Trends Biochem. Sci. 30, 26–34 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Dawson, P.E., Muir, T.W., Clarklewis, I. & Kent, S.B.H. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Muir, T.W. Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. 72, 249–289 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Paulus, H. Protein splicing and related forms of protein autoprocessing. Annu. Rev. Biochem. 69, 447–496 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Otomo, T., Ito, N., Kyogoku, Y. & Yamazaki, T. NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. Biochemistry 38, 16040–16044 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Cotton, G.J., Ayers, B., Xu, R. & Muir, T.W. Insertion of a synthetic peptide into a recombinant protein framework: a protein biosensor. J. Am. Chem. Soc. 121, 1100–1101 (1999).

    Article  CAS  Google Scholar 

  7. Blaschke, U.K., Cotton, G.J. & Muir, T.W. Synthesis of multi-domain proteins using expressed protein ligation: Strategies for segmental isotopic labeling of internal regions. Tetrahedron 56, 9461–9470 (2000).

    Article  CAS  Google Scholar 

  8. Schwarzer, D. & Cole, P.A. Protein semisynthesis and expressed protein ligation: chasing a protein's tail. Curr. Opin. Chem. Biol. 9, 561–569 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Evans-Jr, T.C., Benner, J. & Xu, M.Q. Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci. 7, 2256–2264 (1998).

    Article  CAS  Google Scholar 

  10. Wu, W., Wood, D.W., Belfort, G., Derbyshire, V. & Belfort, M. Intein-mediated purification of cytotoxic endonuclease I-TevI by insertional inactivation and pH-controllable splicing. Nucleic Acids Res. 30, 4864–4871 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yamazaki, T. et al. Segmental isotope labeling for protein NMR using peptide splicing. J. Am. Chem. Soc. 120, 5591–5592 (1998).

    Article  CAS  Google Scholar 

  12. Xu, R., Ayers, B., Cowburn, D. & Muir, T.W. Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc. Natl. Acad. Sci. USA 96, 388–393 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Evans, T.C., Jr, Benner, J. & Xu, M-Q. The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. J. Biol. Chem. 274, 18359–18363 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Iwai, H. & Pluckthun, A. Circular β-lactamase: stability enhancement by cyclizing the backbone. FEBS Lett. 459, 166–172 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Scott, C.P., Abel-Santos, E., Wall, M., Wahnon, D.C. & Benkovic, S.J. Production of cyclic peptides and proteins in vivo. Proc. Natl. Acad. Sci. USA 96, 13638–13643 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Camarero, J.A. & Muir, T.W. Biosynthesis of a head-to-tail cyclized protein with improved biological activity. J. Am. Chem. Soc. 121, 5597–5598 (1999).

    Article  CAS  Google Scholar 

  17. Evans, T.C., Jr et al. Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis Species PCC6803. J. Biol. Chem. 275, 9091–9094 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Camarero, J.A., Fushman, D., Cowburn, D. & Muir, T.W. Peptide chemical ligation inside living cells: in vivo generation of a circular protein domain. Bioorg. Med. Chem. 9, 2479–2484 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Camarero, J.A. et al. Rescuing a destabilized protein fold through backbone cyclization. J. Mol. Biol. 308, 1045–1062 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Iwai, H., Lingel, A. & Pluckthun, A. Cyclic green fluorescent protein produced in vivo using an artificially split PI-PfuI intein from Pyrococcus furiosus. J. Biol. Chem. 276, 16548–16554 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Scott, C.P., Abel-Santos, E., Jones, A.D. & Benkovic, S.J. Structural requirements for the biosynthesis of backbone cyclic peptide libraries. Chem. Biol. 8, 801–815 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Kinsella, T.M. et al. Retrovirally delivered random cyclic peptide libraries yield inhibitors of Interleukin-4 signaling in human B cells. J. Biol. Chem. 277, 37512–37518 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Williams, N.K. et al. Stabilization of native protein fold by intein-mediated covalent cyclization. J. Mol. Biol. 346, 1095–1108 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Kent, S.B.H. Chemical synthesis of peptides and proteins. Annu. Rev. Biochem. 57, 957–989 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Villain, M., Vizzavona, J. & Rose, K. Covalent capture: a new tool for the purification of synthetic and recombinant polypeptides. Chem. Biol. 8, 673–679 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Bang, D. & Kent, S.B.H. A one-pot total synthesis of crambin. Angew. Chem. Int. Edn. Engl. 43, 2534–2538 (2004).

    Article  CAS  Google Scholar 

  27. McCaldon, P. & Argos, P. Oligopeptide biases in protein sequences and their use in predicting protein coding regions in nucleotide sequences. Proteins 4, 99–122 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Valiyaveetil, F.I., MacKinnon, R. & Muir, T.W. Semisynthesis and folding of the potassium channel KcsA. J. Am. Chem. Soc. 124, 9113–9120 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Yan, L.Z. & Dawson, P.E. Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J. Am. Chem. Soc. 123, 526–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Canne, L.E., Bark, S.J. & Kent, S.B.H. Extending the applicability of native chemical ligation. J. Am. Chem. Soc. 118, 5891–5896 (1996).

    Article  CAS  Google Scholar 

  31. Offer, J., Boddy, C.N.C. & Dawson, P.E. Extending synthetic access to proteins with a removable acyl transfer auxiliary. J. Am. Chem. Soc. 124, 4642–4646 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Saxon, E., Armstrong, J.I. & Bertozzi, C.R.A. “Traceless” Staudinger ligation for the chemoselective synthesis of amide bonds. Org. Lett. 2, 2141–2143 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Nilsson, B.L., Kiessling, L.L. & Raines, R.T. Staudinger ligation: a peptide from a thioester and azide. Org. Lett. 2, 1939–1941 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Chong, S., Williams, K.S., Wotkowicz, C. & Xu, M.Q. Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein. J. Biol. Chem. 273, 10567–10577 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Southworth, M.W., Amaya, K., Evans, T.C., Xu, M.Q. & Perler, F.B. Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. Biotechniques 27, 110–120 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Xu, M.Q., Paulus, H. & Chong, S. Fusions to self-splicing inteins for protein purification. Methods Enzymol. 326, 376–418 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Hackeng, T.M., Griffin, J.H. & Dawson, P.E. Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc. Natl. Acad. Sci. USA 96, 10068–10073 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Botti, P., Villain, M., Manganiello, S. & Gaertner, H. Native chemical ligation through in situ O to S acyl shift. Org. Lett. 6, 4861–4864 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Ohta, Y. et al. Cysteine-derived S-protected oxazolidinones: potential chemical devices for the preparation of peptide thioesters. Org. Lett. 8, 467–470 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Muir, T.W., Sondhi, D. & Cole, P.A. Expressed protein ligation: a general method for protein engineering. Proc. Natl. Acad. Sci. USA 95, 6705–6710 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Camarero, J.A. et al. Autoregulation of a bacterial sigma factor explored by using segmental isotopic labeling and NMR. Proc. Natl. Acad. Sci. USA 99, 8536–8541 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Erlanson, D.A., Chytil, M. & Verdine, G.L. The leucine zipper domain controls the orientation of AP-1 in the NFAT center dot AP-1 center dot DNA complex. Chem. Biol. 3, 981–991 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Tolbert, T.J. & Wong, C.H. New methods for proteomic research: preparation of proteins with N-terminal cysteines for labeling and conjugation. Angew. Chem. Int. Edn. Engl. 41, 2171–2174 (2002).

    Article  CAS  Google Scholar 

  44. Derbyshire, V. et al. Genetic definition of a protein-splicing domain: functional mini-inteins support structure predictions and a model for intein evolution. Proc. Natl. Acad. Sci. USA 94, 11466–11471 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mathys, S. et al. Characterization of a self-splicing mini-intein and its conversion into autocatalytic N- and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene 231, 1–13 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Wood, D.W., Wu, W., Belfort, G., Derbyshire, V. & Belfort, M. A genetic system yields self-cleaving inteins for bioseparations. Nat. Biotechnol. 17, 889–892 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Romanelli, A., Shekhtman, A., Cowburn, D. & Muir, T.W. Semisynthesis of a segmental isotopically labeled protein splicing precursor: NMR evidence for an unusual peptide bond at the N-extein-intein junction. Proc. Natl. Acad. Sci. USA 101, 6397–6402 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Muralidharan, V. et al. Domain-specific incorporation of noninvasive optical probes into recombinant proteins. J. Am. Chem. Soc. 126, 14004–14012 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Beligere, G.S. & Dawson, P.E. Conformationally assisted protein ligation using C-terminal thioester peptides. J. Am. Chem. Soc. 121, 6332–6333 (1999).

    Article  CAS  Google Scholar 

  50. Gentle, I.E., De Souza, D.P. & Baca, M. Direct production of proteins with N-terminal cysteine for site-specific conjugation. Bioconjug. Chem. 15, 658–663 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Shi, J.X. & Muir, T.W. Development of a tandem protein trans-splicing system based on native and engineered split inteins. J. Am. Chem. Soc. 127, 6198–6206 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Southworth, M.W. et al. Control of protein splicing by intein fragment reassembly. EMBO J. 17, 918–926 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mills, K.V., Lew, B.M., Jiang, S.-q. & Paulus, H. Protein splicing in trans by purified N- and C-terminal fragments of the Mycobacterium tuberculosis RecA intein. Proc. Natl. Acad. Sci. USA 95, 3543–3548 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sun, W., Yang, J., Liu, X-Q. Synthetic two-piece and three-piece split inteins for protein trans-splicing. J. Biol. Chem. 279, 35281–35286 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Wu, H., Hu, Z. & Liu, X-Q. Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc. Natl. Acad. Sci. USA 95, 9226–9231 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zuger, S. & Iwai, H. Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies. Nat. Biotechnol. 23, 736–740 (2005).

    Article  PubMed  CAS  Google Scholar 

  57. Mootz, H.D. & Muir, T.W. Protein splicing triggered by a small molecule. J. Am. Chem. Soc. 124, 9044–9045 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Ozawa, T., Kaihara, A., Sato, M., Tachihara, K. & Umezawa, Y. Split luciferase as an optical probe for detecting protein-protein interactions in mammalian cells based on protein splicing. Anal. Chem. 73, 2516–2521 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Giriat, I. & Muir, T.W. Protein semisynthesis in living cells. J. Am. Chem. Soc. 125, 7180–7181 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Chin, H.G. et al. Protein trans-splicing in transgenic plant chloroplast: reconstruction of herbicide resistance from split genes. Proc. Natl. Acad. Sci. USA 100, 4510–4515 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang, J., Fox, G.C., Jr & Henry-Smith, T.V. Intein-mediated assembly of a functional β-glucuronidase in transgenic plants. Proc. Natl. Acad. Sci. USA 100, 3513–3518 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Algire, M.A., Maag, D. & Lorsch, J.R. Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation. Mol. Cell 20, 251–262 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Maag, D., Fekete, C.A., Gryczynski, Z. & Lorsch, J.R. A conformational change in the eukaryotic translation preinitiation complex and release of eIF1 signal recognition of the start codon. Mol. Cell 17, 265–275 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Anderson, L.L., Marshall, G.R., Crocker, E., Smith, S.O. & Baranski, T.J. Motion of carboxyl terminus of Gα is restricted upon G protein activation. J. Biol. Chem. 280, 31019–31026 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Yagi, H., Tsujimoto, T., Yamazaki, T., Yoshida, M. & Akutsu, H. Conformational change of H+-ATPase β-monomer revealed on segmental isotope labeling NMR spectroscopy. J. Am. Chem. Soc. 126, 16632–16638 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Tatulian, S.A., Qin, S., Pande, A.H. & He, X.M. Positioning membrane proteins by novel protein engineering and biophysical approaches. J. Mol. Biol. 351, 939–947 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Wu, J-W., et al. Crystal Structure of a Phosphorylated Smad2: Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-β signaling. Mol. Cell 8, 1277–1289 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Qin, B.Y., Lam, S.S., Correia, J.J. & Lin, K. Smad3 allostery links TGF-β receptor kinase activation to transcriptional control. Genes Dev. 16, 1950–1963 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chacko, B.M. et al. Structural basis of heteromeric Smad protein assembly in TGF-β signaling. Mol. Cell 15, 813–823 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Rak, A. et al. Structure of Rab GDP-dissociation inhibitor in complex with prenylated YPT1 GTPase. Science 302, 646–650 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Clayton, D. et al. Total chemical synthesis and electrophysiological characterization of mechanosensitive channels from Escherichia coli and Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 101, 4764–4769 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Valiyaveetil, F.I., Sekedat, M., MacKinnon, R. & Muir, T.W. Glycine as a D-amino acid surrogate in the K+-selectivity filter. Proc. Natl. Acad. Sci. USA 101, 17045–17049 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Doyle, D.A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Burbulis, I., Yamaguchi, K., Gordon, A., Carlson, R. & Brent, R. Using protein-DNA chimeras to detect and count small numbers of molecules. Nat. Methods 2, 31–37 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Lovrinovic, M. et al. Synthesis of protein-nucleic acid conjugates by expressed protein ligation. Chem. Commun. 822–823 (2003).

  76. Chong, S. et al. Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192, 271–281 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Shingledecker, K., Jiang, S.Q. & Paulus, H. Molecular dissection of the Mycobacterium tuberculosis RecA intein: design of a minimal intein and of a trans-splicing system involving two intein fragments. Gene 207, 187–195 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Evans, T.C., Jr, Benner, J. & Xu, M-Q. The in vitro ligation of bacterially expressed proteins using an intein from Methanobacterium thermoautotrophicum. J. Biol. Chem. 274, 3923–3926 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Camarero, J.A., Cotton, G.J., Adeva, A. & Muir, T.W. Chemical ligation of unprotected peptides directly from a solid support. J. Pept. Res. 51, 303–316 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Shin, Y. et al. Fmoc-based synthesis of peptide-(α)thioesters: Application to the total chemical synthesis of a glycoprotein by native chemical ligation. J. Am. Chem. Soc. 121, 11684–11689 (1999).

    Article  CAS  Google Scholar 

  81. Ingenito, R., Bianchi, E., Fattori, D. & Pessi, A. Solid phase synthesis of peptide C-terminal thioesters by Fmoc/t-Bu chemistry. J. Am. Chem. Soc. 121, 11369–11374 (1999).

    Article  CAS  Google Scholar 

  82. Alsina, J., Yokum, T.S., Albericio, F. & Barany, G. Backbone amide linker (BAL) strategy for N(α)-9-fluorenylmethoxycarbonyl (Fmoc) solid-phase synthesis of unprotected peptide p-nitroanilides and thioesters(1). J. Org. Chem. 64, 8761–8769 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Swinnen, D. & Hilvert, D. Facile, Fmoc-compatible solid-phase synthesis of peptide C-terminal thioesters. Org. Lett. 2, 2439–2442 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Camarero, J.A., Hackel, B.J., deYoreo, J.J. & Mitchell, A.R. Fmoc-based synthesis of peptide α-Thioesters using an aryl hydrazine support. J. Org. Chem. 69, 4145–4151 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Perler, F.B. InBase, the intein database. Nucleic Acids. Res. 30, 383–384 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xu, M.Q. & Perler, F.B. The mechanism of protein splicing and its modulation by mutation. EMBO J. 15, 5146–5153 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chong, S. et al. Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. Nucleic Acids Res. 26, 5109–5115 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Banki, M.R., Feng, L. & Wood, D.W. Simple bioseparations using self-cleaving elastin-like polypeptide tags. Nat. Methods 2, 659–662 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Ge, X. et al. Self-cleavable stimulus responsive tags for protein purification without chromatography. J. Am. Chem. Soc. 127, 11228–11229 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Liu, X-Q. & Yang, J. Split dnaE genes encoding multiple novel inteins in Trichodesmium erythraeum. J. Biol. Chem. 278, 26315–26318 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Nichols, N.M. & Evans, T.C., Jr . Mutational analysis of protein splicing, cleavage, and self-association reactions mediated by the naturally split Ssp DnaE intein. Biochemistry 43, 10265–10276 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Schnolzer, M. & Kent, S.B. Constructing proteins by dovetailing unprotected synthetic peptides: backbone-engineered HIV protease. Science 256, 221–225 (1992).

    Article  CAS  PubMed  Google Scholar 

  93. Gaertner, H.F. et al. Construction of protein analogs by site-specific Condensation of unprotected fragments. Bioconjug. Chem. 3, 262–268 (1992).

    Article  CAS  PubMed  Google Scholar 

  94. Hang, H.C. & Bertozzi, C.R. Chemoselective approaches to glycoprotein assembly. Acc. Chem. Res. 34, 727–736 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Kolb, H.C. & Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today 8, 1128 (2003).

  96. Bianchi, E., Ingenito, R., Simon, R.J. & Pessi, A. Engineering and chemical synthesis of a transmembrane protein: the HCV protease cofactor protein NS4A. J. Am. Chem. Soc. 121, 7698–7699 (1999).

    Article  CAS  Google Scholar 

  97. Hunter, C.L. & Kochendoerfer, G.G. Native chemical ligation of hydropobic peptides in lipid bilayer systems. Bioconjug. Chem. 15, 437–440 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Kochendoerfer, G.G. et al. Total chemical synthesis of the integral membrane protein influenza A virus M2: role of its C-terminal domain in tetramer assembly. Biochemistry 38, 11905–11913 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Yeo, D.S. et al. Cell-permeable small molecule probes for site-specific labeling of proteins. Chem. Commun. 2870–2871 (2003).

  100. Dawson, P.E., Churchill, M.J., Ghadiri, M.R. & Kent, S.B.H. Modulation of reactivity in native chemical ligation through the use of thiol additives. J. Am. Chem. Soc. 119, 4325–4329 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Some of the work discussed in this review was performed by the authors and was supported by the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom W Muir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muralidharan, V., Muir, T. Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat Methods 3, 429–438 (2006). https://doi.org/10.1038/nmeth886

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth886

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing