Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A recombineering pipeline for functional genomics applied to Caenorhabditis elegans

Abstract

We present a new concept in DNA engineering based on a pipeline of serial recombineering steps in liquid culture. This approach is fast, straightforward and facilitates simultaneous processing of multiple samples in parallel. We validated the approach by generating green fluorescent protein (GFP)-tagged transgenes from Caenorhabditis briggsae genomic clones in a multistep pipeline that takes only 4 d. The transgenes were engineered with minimal disturbance to the natural genomic context so that the correct level and pattern of expression will be secured after transgenesis. An example transgene for the C. briggsae ortholog of lin-59 was used for ballistic transformation in Caenorhabditis elegans. We show that the cross-species transgene is correctly expressed and rescues RNA interference (RNAi)-mediated knockdown of the endogenous C. elegans gene. The strategy that we describe adapts the power of recombineering in Escherichia coli for fluent DNA engineering to a format that can be directly scaled up for genomic projects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recombineering pipeline.
Figure 2: Recombineering toolkit.
Figure 3: Parallel processing in liquid culture.
Figure 4: Expression pattern of the cblin-59::egfp transgene.
Figure 5: Rescue of an RNAi-induced phenotype by a cross-species third allele.

Similar content being viewed by others

References

  1. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  Google Scholar 

  2. Huh, W.K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    Article  CAS  Google Scholar 

  3. Gavin, A.C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).

    Article  CAS  Google Scholar 

  4. Krogan, N.J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006).

    Article  CAS  Google Scholar 

  5. Ristevski, S. Making better transgenic models: conditional, temporal, and spatial approaches. Mol. Biotechnol. 29, 153–163 (2005).

    Article  CAS  Google Scholar 

  6. Zhang, Y., Buchholz, F., Muyrers, J.P. & Stewart, A.F. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20, 123–128 (1998).

    Article  CAS  Google Scholar 

  7. Muyrers, J.P., Zhang, Y., Testa, G. & Stewart, A.F. Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res. 27, 1555–1557 (1999).

    Article  CAS  Google Scholar 

  8. Zhang, Y., Muyrers, J.P., Testa, G. & Stewart, A.F. DNA cloning by homologous recombination in Escherichia coli. Nat. Biotechnol. 18, 1314–1317 (2000).

    Article  CAS  Google Scholar 

  9. Lee, E.C. et al. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73, 56–65 (2001).

    Article  CAS  Google Scholar 

  10. Muyrers, J.P., Zhang, Y. & Stewart, A.F. Techniques: recombinogenic engineering—new options for cloning and manipulating DNA. Trends Biochem. Sci. 26, 325–331 (2001).

    Article  CAS  Google Scholar 

  11. Court, D.L., Sawitzke, J.A. & Thomason, L.C. Genetic engineering using homologous recombination. Annu. Rev. Genet. 36, 361–388 (2002).

    Article  CAS  Google Scholar 

  12. Kittler, R. et al. RNA interference rescue by bacterial artificial chromosome transgenesis in mammalian tissue culture cells. Proc. Natl. Acad. Sci. USA 102, 2396–2401 (2005).

    Article  CAS  Google Scholar 

  13. Sarov, M. & Stewart, A.F. The best control for the specificity of RNAi. Trends Biotechnol. 23, 446–448 (2005).

    Article  CAS  Google Scholar 

  14. Bao, Z. et al. Automated cell lineage tracing in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 103, 2707–2712 (2006).

    Article  CAS  Google Scholar 

  15. Polanowska, J. et al. Tandem immunoaffinity purification of protein complexes from Caenorhabditis elegans. Biotechniques 36, 778–780, 782 (2004).

    Article  CAS  Google Scholar 

  16. Stein, L.D. et al. The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol. 1, E45 (2003).

    Article  Google Scholar 

  17. Wang, J. et al. An improved recombineering approach by adding RecA to λ Red recombination. Mol. Biotechnol. 32, 43–54 (2006).

    Article  Google Scholar 

  18. Cardona, S.T. & Valvano, M.A. An expression vector containing a rhamnose-inducible promoter provides tightly regulated gene expression in Burkholderia cenocepacia. Plasmid 54, 219–228 (2005).

    Article  CAS  Google Scholar 

  19. Buchholz, F., Ringrose, L., Angrand, P.O., Rossi, F. & Stewart, A.F. Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res. 24, 4256–4262 (1996).

    Article  CAS  Google Scholar 

  20. Skerra, A. Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. Gene 151, 131–135 (1994).

    Article  CAS  Google Scholar 

  21. Hashimoto-Gotoh, T. & Sekiguchi, M. Mutations of temperature sensitivity in R plasmid pSC101. J. Bacteriol. 131, 405–412 (1977).

    CAS  Google Scholar 

  22. Penfold, R.J. & Pemberton, J.M. An improved suicide vector for construction of chromosomal insertion mutations in bacteria. Gene 118, 145–146 (1992).

    Article  CAS  Google Scholar 

  23. Praitis, V., Casey, E., Collar, D. & Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157, 1217–1226 (2001).

    CAS  Google Scholar 

  24. Maduro, M. & Pilgrim, D. Conservation of function and expression of unc-119 from two Caenorhabditis species despite divergence of non-coding DNA. Gene 183, 77–85 (1996).

    Article  CAS  Google Scholar 

  25. Chamberlin, H.M. & Thomas, J.H. The bromodomain protein LIN-49 and trithorax-related protein LIN-59 affect development and gene expression in Caenorhabditis elegans. Development 127, 713–723 (2000).

    CAS  Google Scholar 

  26. Simmer, F. et al. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol. 1, E12 (2003).

    Article  Google Scholar 

  27. Hope, I.A. et al. Feasibility of genome-scale construction of promoter:reporter gene fusions for expression in Caenorhabditis elegans using a multisite gateway recombination system. Genome Res. 14, 2070–2075 (2004).

    Article  CAS  Google Scholar 

  28. Sassi, H.E., Renihan, S., Spence, A.M. & Cooperstock, R.L. Gene CATCHR—gene cloning and tagging for Caenorhabditis elegans using yeast homologous recombination: a novel approach for the analysis of gene expression. Nucleic Acids Res. 33, e163 (2005).

    Article  Google Scholar 

  29. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  Google Scholar 

  30. Kamath, R.S., Martinez-Campos, M., Zipperlen, P., Fraser, A.G. & Ahringer, J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2 RESEARCH0002 (2001).

Download references

Acknowledgements

We thank M. Valvano for the pSCRhaB2 plasmid; the Caenorhabditis Genetics Center for worm strains; and E. Entchev, L. Pelletier, J. Fu and members of the Genomics Department of TU Dresden for discussions. This work was supported by the European Union and Freistaat Sachsen, by Europäischer Fonds für regionale Entwicklung (EFRE) funding (project code 181) through the Sächsisches Staatsministerium für Wissenschaft und Kunst (SMWK) and Technische Universität Dresden (TUD), and by the Bundesminiterium fuer Bildung und Forschung (BMBF) Proteomics Program.

Author information

Authors and Affiliations

Authors

Contributions

M.S. performed the experiments in Figures 1,35; M.S., S.S. and A.P. generated the reagents used in Figure 2; A.R. generated the BAC clone map; S.E. performed the bombardment experiments; Y.Z. provided reagents and essential expertise in Red/ET recombineering; M.S, A.A.H. and A.F.S. conceived the project and prepared the manuscript.

Corresponding author

Correspondence to A Francis Stewart.

Ethics declarations

Competing interests

Y.Z. and A.F.S. are shareholders, and Y.Z. is an employee of Gene Bridges GmbH, which holds the exclusive commercial rights to the Red/ET recombineering methodologies.

Supplementary information

Supplementary Fig. 1

BAC mapping. (PDF 53 kb)

Supplementary Fig. 2

Controlled expression of recombinases from pRedFlp. (PDF 65 kb)

Supplementary Fig. 3

Restriction digest analysis of the 10 tagged transgenes. (PDF 293 kb)

Supplementary Fig. 4

Recombineering outcome with individual clones. (PDF 167 kb)

Supplementary Table 1

Bombardment experiments. (PDF 15 kb)

Supplementary Data (DOC 1105 kb)

Supplementary Methods (PDF 134 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarov, M., Schneider, S., Pozniakovski, A. et al. A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nat Methods 3, 839–844 (2006). https://doi.org/10.1038/nmeth933

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth933

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing