Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Patch amperometry: high-resolution measurements of single-vesicle fusion and release

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Patch amperometry setup.
Figure 2: Carbon fiber electrodes.
Figure 3: Patch amperometry pipet holders.
Figure 4: Patch amperometry recording from a rat chromaffin cell.

References

  1. Neher, E. & Marty, A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc. Natl. Acad. Sci. USA 79, 6712–6716 (1982).

    Article  CAS  Google Scholar 

  2. Lollike, K., Borregaard, N. & Lindau, M. The exocytotic fusion pore of small granules has a conductance similar to an ion channel. J. Cell Biol. 129, 99–104 (1995).

    Article  CAS  Google Scholar 

  3. Debus, K. & Lindau, M. Resolution of patch capacitance recordings and of fusion pore conductances in small vesicles. Biophys. J. 78, 2983–2997 (2000).

    Article  CAS  Google Scholar 

  4. Klyachko, V.A. & Jackson, M.B. Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals. Nature 418, 89–92 (2002).

    Article  CAS  Google Scholar 

  5. Wightman, R.M. et al. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc. Natl. Acad. Sci. USA 88, 10754–10758 (1991).

    Article  CAS  Google Scholar 

  6. Chow, R.H., von Rüden, L. & Neher, E. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356, 60–63 (1992).

    Article  CAS  Google Scholar 

  7. Chow, R.H. & von Rüden, L. Electrochemical detection of secretion from single cells in Single Channel Recording, 2nd edn. (eds. Sakmann, B. & Neher, E.) 245–275 (Plenum Press, New York, 1995).

    Chapter  Google Scholar 

  8. Bruns, D. & Jahn, R. Real-time measurement of transmitter release from single synaptic vesicles. Nature 377, 62–65 (1995).

    Article  CAS  Google Scholar 

  9. Pothos, E.N., Davila, V. & Sulzer, D. Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size. J. Neurosci. 18, 4106–4118 (1998).

    Article  CAS  Google Scholar 

  10. Albillos, A. et al. The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389, 509–512 (1997).

    Article  CAS  Google Scholar 

  11. Alés, E. et al. High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism. Nat. Cell Biol. 1, 40–44 (1999).

    Article  Google Scholar 

  12. Tabares, L., Alés, E., Lindau, M. & Alvarez De Toledo, G. Exocytosis of catecholamine-containing and catecholamine-free granules in chromaffin cells. J. Biol. Chem. 276, 39974–39979 (2001).

    Article  CAS  Google Scholar 

  13. Dernick, G., Alvarez De Toledo, G. & Lindau, M. Exocytosis of single chromaffin granules in cell-free inside-out membrane patches. Nat. Cell Biol. 5, 358–362 (2003).

    Article  CAS  Google Scholar 

  14. Gong, L.W., Alvarez De Toledo, G. & Lindau, M. Secretory vesicles membrane area is regulated in tandem with quantal size in chromaffin cells. J. Neurosci. 23, 7917–7921 (2003).

    Article  CAS  Google Scholar 

  15. Parsons, T.D., Coorssen, J.R., Horstmann, H. & Almers, W. Docked granules, the exocytic burst, and the need for ATP hydrolysis in endocrine cells. Neuron 15, 1085–1096 (1995).

    Article  CAS  Google Scholar 

  16. Hamill, O.P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F.J. Improved patch-clamp technique for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. Eur. J. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  17. Penner, R. A practical guide to patch clamping in Single Channel Recording, 2nd ed. (eds. Sakmann, B. & Neher, E.) 3–30 (Plenum Press, New York, 1995).

    Chapter  Google Scholar 

  18. Mosharov, E.V., Gong, L.W., Khanna, B., Sulzer, D. & Lindau, M. Intracellular patch electrochemistry: regulation of cytosolic catecholamines in chromaffin cells. J. Neurosci. 23, 5835–5845 (2003).

    Article  CAS  Google Scholar 

  19. Schroeder, T.J. et al. Analysis of diffusional broadening of vesicular packets of catecholamines released from biological cells during exocytosis. Anal. Chem. 64, 3077–3083 (1992).

    Article  CAS  Google Scholar 

  20. Jankowski, J.A., Schroeder, T.J., Ciolkowski, E.L. & Wightman, R.M. Temporal characteristics of quantal secretion of catecholamines from adrenal medullary cells. J. Biol. Chem. 268, 14694–14700 (1993).

    CAS  PubMed  Google Scholar 

  21. Jankowski, J.A., Finnegan, J.M. & Wightman, R.M. Extracellular ionic composition alters kinetics of vesicular release of catecholamines and quantal size during exocytosis at adrenal medullary cells. J. Neurochem. 63, 1739–1747 (1994).

    Article  CAS  Google Scholar 

  22. Wightman, R.M., Schroeder, T.J., Finnegan, J.M., Ciolkowski, E.L. & Pihel, K. Time course of release of catecholamines from individual vesicles during exocytosis at adrenal medullary cells. Biophys. J. 68, 383–390 (1995).

    Article  CAS  Google Scholar 

  23. Schroeder, T.J. et al. Temporally resolved, independent stages of individual exocytotic secretion events. Biophys. J. 70, 1061–1068 (1996).

    Article  CAS  Google Scholar 

  24. Segura, F., Brioso, M.A., Gomez, J.F., Machado, J.D. & Borges, R. Automatic analysis for amperometrical recordings of exocytosis. J. Neurosci. Methods 103, 151–156 (2000).

    Article  CAS  Google Scholar 

  25. Mazzanti, M. & DeFelice, L.J. Na channel kinetics during the spontaneous heart beat in embryonic chick ventricle cells. Biophys. J. 52, 95–100 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Kwan and J. Lenz for the cell preparations and excellent technical assistance; M. Montesinos, R. Borges, R. Staal and D. Sulzer for critical reading of the manuscript and for contributing information on using the Axopatch 200B for patch amperometry. This work was supported by grants from the Deutsche Forschungsgemeinschaft, the National Institutes of Health (R01 NS38200) and the Nanobiotechnology Center (a Science and Technology Center (STC) program of the National Science Foundation, Agreement No. ECS-9876771) to M.L., and a grant from the Ministerio de Educación y Cultura, Spain to G.A.d.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Lindau.

Supplementary information

Supplementary Figure 1

Circuit diagram of remote controlled signal adder to switch sine wave stimulus on and off. (PDF 47 kb)

Supplementary Figure 2

Technical drawing of manual patch amperometry electrode holder. (PDF 138 kb)

Supplementary Note 1

Programmable CFE puller. (PDF 899 kb)

Supplementary Software (ZIP 97 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dernick, G., Gong, LW., Tabares, L. et al. Patch amperometry: high-resolution measurements of single-vesicle fusion and release. Nat Methods 2, 699–708 (2005). https://doi.org/10.1038/nmeth0905-699

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth0905-699

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing