Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Monitoring macromolecular complexes involved in the chaperonin-assisted protein folding cycle by mass spectrometry

Abstract

We have used native mass spectrometry to analyze macromolecular complexes involved in the chaperonin-assisted refolding of gp23, the major capsid protein of bacteriophage T4. Adapting the instrumental methods allowed us to monitor all intermediate complexes involved in the chaperonin folding cycle. We found that GroEL can bind up to two unfolded gp23 substrate molecules. Notably, when GroEL is in complex with the cochaperonin gp31, it binds exclusively one gp23. We also demonstrated that the folding and assembly of gp23 into 336-kDa hexamers by GroEL-gp31 can be monitored directly by electrospray ionization mass spectrometry (ESI-MS). These data reinforce the great potential of ESI-MS as a technique to investigate structure-function relationships of protein assemblies in general and the chaperonin-protein folding machinery in particular. A major advantage of native mass spectrometry is that, given sufficient resolution, it allows the analysis at the picomole level of sensitivity of heterogeneous protein complexes with molecular masses up to several million daltons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representation of crystallographic models of the GroEL-GroES chaperonin system from E. coli and a comparison of E. coli cochaperonin GroES with bacteriophage T4 gp31.
Figure 2: The analysis of GroEL-gp31 complexes by mass spectrometry.
Figure 3: Formation and characterization of the GroEL-gp31 chaperonin complex.
Figure 4: Stoichiometry of GroEL:gp23 binding and characterization of the complexes.
Figure 5: In vitro refolding of gp23 monitored by mass spectrometry.
Figure 6: Overview of the experimental design used to monitor individual steps during GroEL-assisted in vitro refolding of gp23.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Houry, W.A., Frishman, D., Eckerskorn, C., Lottspeich, F. & Hartl, F.U. Identification of in vivo substrates of the chaperonin GroEL. Nature 402, 147–154 (1999).

    Article  CAS  Google Scholar 

  2. Hartl, F.U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

    Article  CAS  Google Scholar 

  3. Ellis, R.J. Molecular chaperones: inside and outside the Anfinsen cage. Curr. Biol. 11, R1038–R1040 (2001).

    Article  CAS  Google Scholar 

  4. Sigler, P.B. et al. Structure and function in GroEL-mediated protein folding. Annu. Rev. Biochem. 67, 581–608 (1998).

    Article  CAS  Google Scholar 

  5. Walters, C., Errington, N., Rowe, A.J. & Harding, S.E. Hydrolysable ATP is a requirement for the correct interaction of molecular chaperonins cpn60 and cpn10. Biochem. J. 364, 849–855 (2002).

    Article  CAS  Google Scholar 

  6. van der Vies, S.M., Viitanen, P.V., Gatenby, A.A., Lorimer, G.H. & Jaenicke, R. Conformational states of ribulosebisphosphate carboxylase and their interaction with chaperonin 60. Biochemistry 31, 3635–3644 (1992).

    Article  CAS  Google Scholar 

  7. Hunt, J.F., van der Vies, S.M., Henry, L. & Deisenhofer, J. Structural adaptations in the specialized bacteriophage T4 cochaperonin Gp31 expand the size of the Anfinsen cage. Cell 90, 361–371 (1997).

    Article  CAS  Google Scholar 

  8. Langer, T., Pfeifer, G., Martin, J., Baumeister, W. & Hartl, F.U. Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J. 11, 4757–4765 (1992).

    Article  CAS  Google Scholar 

  9. Braig, K., Simon, M., Furuya, F., Hainfeld, J.F. & Horwich, A.L. A polypeptide bound by the chaperonin GroEL is localized within a central cavity. Proc. Natl. Acad. Sci. USA 90, 3978–3982 (1993).

    Article  CAS  Google Scholar 

  10. Chen, S. et al. Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy. Nature 371, 261–264 (1994).

    Article  CAS  Google Scholar 

  11. Braig, K. et al. The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371, 578–586 (1994).

    Article  CAS  Google Scholar 

  12. Fiaux, J., Bertelsen, E.B., Horwich, A.L. & Wuthrich, K. NMR analysis of a 900K GroEL GroES complex. Nature 418, 207–211 (2002).

    Article  CAS  Google Scholar 

  13. Riek, R., Fiaux, J., Bertelsen, E.B., Horwich, A.L. & Wuthrich, K. Solution NMR techniques for large molecular and supramolecular structures. J. Am. Chem. Soc. 124, 12144–12153 (2002).

    Article  CAS  Google Scholar 

  14. Griswold, I.J. & Dahlquist, F.W. Bigger is better: megadalton protein NMR in solution. Nat. Struct. Biol. 9, 567–568 (2002).

    Article  CAS  Google Scholar 

  15. van den Heuvel, R.H. & Heck, A.J. Native protein mass spectrometry: from intact oligomers to functional machineries. Curr. Opin. Chem. Biol. 8, 519–526 (2004).

    Article  CAS  Google Scholar 

  16. Verentchikov, A.N., Ens, W. & Standing, K.G. Reflecting time-of-flight mass spectrometer with an electrospray ion source and orthogonal extraction. Anal. Chem. 66, 126–133 (1994).

    Article  CAS  Google Scholar 

  17. Loo, J.A. Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom. Rev. 16, 1–23 (1997).

    Article  CAS  Google Scholar 

  18. Heck, A.J. & Van Den Heuvel, R.H. Investigation of intact protein complexes by mass spectrometry. Mass Spectrom. Rev. 23, 368–389 (2004).

    Article  CAS  Google Scholar 

  19. Robinson, C.V. Protein complexes take flight. Nat. Struct. Biol. 9, 505–506 (2002).

    Article  CAS  Google Scholar 

  20. Heuvel, R.H. & Heck, A.J. Native protein mass spectrometry: from intact oligomers to functional machineries. Curr. Opin. Chem. Biol. 8, 519–526 (2004).

    Article  Google Scholar 

  21. Hernandez, H. & Robinson, C.V. Dynamic protein complexes: insights from mass spectrometry. J. Biol. Chem. 276, 46685–46688 (2001).

    Article  CAS  Google Scholar 

  22. Robinson, C.V. et al. Conformation of GroEL-bound α-lactalbumin probed by mass spectrometry. Nature 372, 646–651 (1994).

    Article  CAS  Google Scholar 

  23. Coyle, J.E., Jaeger, J., Gross, M., Robinson, C.V. & Radford, S.E. Structural and mechanistic consequences of polypeptide binding by GroEL. Fold. Des. 2, R93–104 (1997).

    Article  CAS  Google Scholar 

  24. Coyle, J.E. et al. GroEL accelerates the refolding of hen lysozyme without changing its folding mechanism. Nat. Struct. Biol. 6, 683–690 (1999).

    Article  CAS  Google Scholar 

  25. Rostom, A.A. & Robinson, C.V. Detection of the intact GroEL chaperonin assembly by mass spectrometry. J. Am. Chem. Soc. 121, 4718–4719 (1999).

    Article  CAS  Google Scholar 

  26. Krutchinsky, A.N., Chernushevich, I.V., Spicer, V.L., Ens, W. & Standing, K.G. Collisional damping interface for an electrospray ionization time-of-flight mass spectrometer. J. Am. Soc. Mass Spectrom. 9, 569–579 (1998).

    Article  CAS  Google Scholar 

  27. Sobott, F., Hernandez, H., McCammon, M.G., Tito, M.A. & Robinson, C.V. A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal. Chem. 74, 1402–1407 (2002).

    Article  CAS  Google Scholar 

  28. Tahallah, N., Pinkse, M., Maier, C.S. & Heck, A.J. The effect of the source pressure on the abundance of ions of noncovalent protein assemblies in an electrospray ionization orthogonal time-of-flight instrument. Rapid Commun. Mass Spectrom. 15, 596–601 (2001).

    Article  CAS  Google Scholar 

  29. Chernushevich, I.V. & Thomson, B.A. Collisional cooling of large ions in electrospray mass spectrometry. Anal. Chem. 76, 1754–1760 (2004).

    Article  CAS  Google Scholar 

  30. Jackson, G.S. et al. Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle: implications for the mechanism of assisted protein folding. Biochemistry 32, 2554–2563 (1993).

    Article  CAS  Google Scholar 

  31. Burston, S.G., Ranson, N.A. & Clarke, A.R. The origins and consequences of asymmetry in the chaperonin reaction cycle. J. Mol. Biol. 249, 138–152 (1995).

    Article  CAS  Google Scholar 

  32. Laemmli, U.K., Beguin, F. & Gujer-Kellenberger, G. A factor preventing the major head protein of bacteriophage T4 from random aggregation. J. Mol. Biol. 47, 69–85 (1970).

    Article  CAS  Google Scholar 

  33. van der Vies, S.M., Gatenby, A.A. & Georgopoulos, C. Bacteriophage T4 encodes a cochaperonin that can substitute for Escherichia coli GroES in protein folding. Nature 368, 654–656 (1994).

    Article  CAS  Google Scholar 

  34. Hartl, F.U. Molecular chaperones in cellular protein folding. Nature 381, 571–579 (1996).

    Article  CAS  Google Scholar 

  35. Bukau, B. & Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell 92, 351–366 (1998).

    Article  CAS  Google Scholar 

  36. Bakkes, P.J., Faber, B.W., van Heerikhuizen, H. & van der Vies, S.M. The T4-encoded cochaperonin, gp31, has unique properties that explain its requirement for the folding of the T4 major capsid protein. Proc. Natl. Acad. Sci. USA (in the press).

  37. Xu, Z., Horwich, A.L. & Sigler, P.B. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388, 741–750 (1997).

    Article  CAS  Google Scholar 

  38. Koonin, E.V. & van der Vies, S.M. Conserved sequence motifs in bacterial and bacteriophage chaperonins. Trends Biochem. Sci. 20, 14–15 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Kroezinga and J. Hendriks, who contributed to some of the work reported in this article. The research was supported by Fundamenteel Onderzoek der Materie, project number 01FB12.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saskia M van der Vies or Albert J R Heck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Various ratios of GroEL-gp23 complexes analyzed by gel filtration (PDF 156 kb)

Supplementary Methods

Protein purification (PDF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Duijn, E., Bakkes, P., Heeren, R. et al. Monitoring macromolecular complexes involved in the chaperonin-assisted protein folding cycle by mass spectrometry. Nat Methods 2, 371–376 (2005). https://doi.org/10.1038/nmeth753

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth753

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing