Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polyene-lipids: A new tool to image lipids

Abstract

Microscopy of lipids in living cells is currently hampered by a lack of adequate fluorescent tags. The most frequently used tags, NBD and BODIPY, strongly influence the properties of lipids, yielding analogs with quite different characteristics. Here, we introduce polyene-lipids containing five conjugated double bonds as a new type of lipid tag. Polyene-lipids exhibit a unique structural similarity to natural lipids, which results in minimal effects on the lipid properties. Analyzing membrane phase partitioning, an important biophysical and biological property of lipids, we demonstrated the superiority of polyene-lipids to both NBD- and BODIPY-tagged lipids. Cells readily take up various polyene-lipid precursors and generate the expected end products with no apparent disturbance by the tag. Applying two-photon excitation microscopy, we imaged the distribution of polyene-lipids in living mammalian cells. For the first time, ether lipids, important for the function of the brain, were successfully visualized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A versatile procedure to introduce conjugated pentaene tags into lipids.
Figure 2: Analysis of phase partitioning of fluorescent SM analogs.
Figure 3: Comparison of lipid metabolites of polyene-labeled or radioactive fatty acids in COS7 cells.
Figure 4: Lipid metabolites of polyene–fatty acid in different cell types.
Figure 5: Imaging of fluorescent polyene-lipids in various types of living mammalian cells.
Figure 6: Localization of different lipid classes in living COS7 cells.

Similar content being viewed by others

References

  1. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    Article  CAS  Google Scholar 

  2. Brown, D.A. & London, E. Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164, 103–114 (1998).

    Article  CAS  Google Scholar 

  3. Magee, T., Pirinen, N., Adler, J., Pagakis, S.N. & Parmryd, I. Lipid rafts: cell surface platforms for T cell signaling. Biol. Res. 35, 127–131 (2002).

    Article  CAS  Google Scholar 

  4. Holthuis, J.C., van Meer, G. & Huitema, K. Lipid microdomains, lipid translocation and the organization of intracellular membrane transport (Review). Mol. Membr. Biol. 20, 231–241 (2003).

    Article  CAS  Google Scholar 

  5. Maier, O., Oberle, V. & Hoekstra, D. Fluorescent lipid probes: some properties and applications (Review). Chem. Phys. Lipids 116, 3–18 (2002).

    Article  CAS  Google Scholar 

  6. Ishitsuka, R., Yamaji-Hasegawa, A., Makino, A., Hirabayashi, Y. & Kobayashi, T. A lipid-specific toxin reveals heterogeneity of sphingomyelin-containing membranes. Biophys. J. 86, 296–307 (2004).

    Article  CAS  Google Scholar 

  7. Chattopadhyay, A. Chemistry and biology of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-labeled lipids: fluorescent probes of biological and model membranes. Chem. Phys. Lipids 53, 1–15 (1990).

    Article  CAS  Google Scholar 

  8. Pagano, R.E., Martin, O.C., Kang, H.C. & Haugland, R.P. A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor. J. Cell Biol. 113, 1267–1279 (1991).

    Article  CAS  Google Scholar 

  9. Stoffel, W. & Michaelis, G. Chemical syntheses of novel fluorescent-labelled fatty acids, phosphatidylcholines and cholesterol esters. Hoppe-Seyler's Z. Physiol. Chem. 357, 7–19 (1976).

    Article  CAS  Google Scholar 

  10. Somerharju, P. Pyrene-labeled lipids as tools in membrane biophysics and cell biology. Chem. Phys. Lipids 116, 57–74 (2002).

    Article  CAS  Google Scholar 

  11. Antes, P., Schwarzmann, G. & Sandhoff, K. Distribution and metabolism of fluorescent sphingosines and corresponding ceramides bearing the diphenylhexatrienyl (DPH) fluorophore in cultured human fibroblasts. Eur. J. Cell Biol. 59, 27–36 (1992).

    CAS  PubMed  Google Scholar 

  12. Pagano, R.E. & Sleight, R.G. Defining lipid transport pathways in animal cells. Science 229, 1051–1057 (1985).

    Article  CAS  Google Scholar 

  13. Kaiser, R.D. & London, E. Determination of the depth of BODIPY probes in model membranes by parallax analysis of fluorescence quenching. Biochim. Biophys. Acta 1375, 13–22 (1998).

    Article  CAS  Google Scholar 

  14. Wang, T.Y. & Silvius, J.R. Different sphingolipids show differential partitioning into sphingolipid/cholesterol-rich domains in lipid bilayers. Biophys. J. 79, 1478–1489 (2000).

    Article  CAS  Google Scholar 

  15. Sklar, L.A., Hudson, B.S. & Simoni, R.D. Conjugated polyene fatty acids as membrane probes: preliminary characterization. Proc. Natl. Acad. Sci. USA 72, 1649–1653 (1975).

    Article  CAS  Google Scholar 

  16. Lentz, B.R. Use of fluorescent probes to monitor molecular order and motions within liposome bilayers. Chem. Phys. Lipids 64, 99–116 (1993).

    Article  CAS  Google Scholar 

  17. Mateo, C.R., Souto, A.A., Amat-Guerri, F. & Acuna, A.U. New fluorescent octadecapentaenoic acids as probes of lipid membranes and protein-lipid interactions. Biophys. J. 71, 2177–2191 (1996).

    Article  CAS  Google Scholar 

  18. Quesada, E., Acuna, A.U. & Amat-Guerri, F. New transmembrane polyene bolaamphiphiles as fluorescent probes in lipid bilayers. Angew. Chem. Int. Edn. Engl. 40, 2095–2097 (2001).

    Article  CAS  Google Scholar 

  19. Quesada, E., Acuna, A.U. & Amat-Guerri, F. Synthesis of carboxyl-tethered symmetric conjugated polyenes as fluorescent transmembrane probes of lipid bilayers. Eur. J. Org. Chem. 2003, 1308–1318 (2003).

    Article  Google Scholar 

  20. Souto, A.A., Ulises Acuna, A. & Amat-Guerri, F. A general and practical synthesis of linear conjugated pentaenoic acids. Tetrahedr. Lett. 35, 5907–5910 (1994).

    Article  CAS  Google Scholar 

  21. London, E. & Feigenson, G.W. Fluorescence quenching in model membranes. 1. Characterization of quenching caused by a spin-labeled phospholipid. Biochemistry 20, 1932–1938 (1981).

    Article  CAS  Google Scholar 

  22. Ahmed, S.N., Brown, D.A. & London, E. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36, 10944–10953 (1997).

    Article  CAS  Google Scholar 

  23. Brown, D.A. & Rose, J.K. Sorting of GPI-Anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–544 (1992).

    Article  CAS  Google Scholar 

  24. Roper, K., Corbeil, D. & Huttner, W.B. Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat. Cell Biol. 2, 582–592 (2000).

    Article  CAS  Google Scholar 

  25. Nagan, N. & Zoeller, R.A. Plasmalogens: biosynthesis and functions. Prog. Lipid Res. 40, 199–229 (2001).

    Article  CAS  Google Scholar 

  26. Tanhuanpaa, K. & Somerharju, P. Gamma-cyclodextrins greatly enhance translocation of hydrophobic fluorescent phospholipids from vesicles to cells in culture. Importance of molecular hydrophobicity in phospholipid trafficking studies. J. Biol. Chem. 274, 35359–35366 (1999).

    Article  CAS  Google Scholar 

  27. Ekroos, K. et al. Charting molecular composition of phosphatidylcholines by fatty acid scanning and ion trap MS3 fragmentation. J. Lipid Res. 44, 2181–2192 (2003).

    Article  CAS  Google Scholar 

  28. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  Google Scholar 

  29. Campbell, R.E. et al. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).

    Article  CAS  Google Scholar 

  30. Huang, H., Starodub, O., McIntosh, A., Kier, A.B. & Schroeder, F. Liver fatty acid-binding protein targets fatty acids to the nucleus Real time confocal and multiphoton fluorescence imaging in living cells. J. Biol. Chem. 277, 29139–29151 (2002).

    Article  CAS  Google Scholar 

  31. Lipsky, N.G. & Pagano, R.E. A vital stain for the Golgi apparatus. Science 228, 745–747 (1985).

    Article  CAS  Google Scholar 

  32. Bielawska, A., Crane, H.M., Liotta, D., Obeid, L.M. & Hannun, Y.A. Selectivity of ceramide-mediated biology. Lack of activity of erythro-dihydroceramide. J. Biol. Chem. 268, 26226–26232 (1993).

    CAS  PubMed  Google Scholar 

  33. Li, L., Tang, X., Taylor, K.G., DuPre, D.B. & Yappert, M.C. Conformational characterization of ceramides by nuclear magnetic resonance spectroscopy. Biophys. J. 82, 2067–2080 (2002).

    Article  CAS  Google Scholar 

  34. Mukherjee, S. & Maxfield, F.R. Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic 1, 203–211 (2000).

    Article  CAS  Google Scholar 

  35. Brugger, B., Erben, G., Sandhoff, R., Wieland, F.T. & Lehmann, W.D. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 94, 2339–2344 (1997).

    Article  CAS  Google Scholar 

  36. Sprong, H., van der Sluijs, P. & van Meer, G. How proteins move lipids and lipids move proteins. Nat. Rev. Mol. Cell Biol. 2, 504–513 (2001).

    Article  CAS  Google Scholar 

  37. Pagano, R.E., Sepanski, M.A. & Martin, O.C. Molecular trapping of a fluorescent ceramide analogue at the Golgi apparatus of fixed cells: Interaction with endogenous lipids provides a trans-Golgi marker for both light and electron microscopy. J. Cell Biol. 109, 2067–2079 (1989).

    Article  CAS  Google Scholar 

  38. Rodemer, C. et al. Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum. Mol. Genet. 12, 1881–1895 (2003).

    Article  CAS  Google Scholar 

  39. Tanhuanpaa, K., Virtanen, J. & Somerharju, P. Fluorescence imaging of pyrene-labeled lipids in living cells. Biochim. Biophys. Acta 1497, 308–320 (2000).

    Article  CAS  Google Scholar 

  40. Thiele, C., Hannah, M.J., Fahrenholz, F. & Huttner, W.B. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat. Cell Biol. 2, 42–49 (2000).

    Article  CAS  Google Scholar 

  41. Bligh, E.G. & Dyer, W.J. A rapid method for total lipid extraction and purifiaction. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    Article  CAS  Google Scholar 

  42. Dasgupta, S. & Hogan, E.L. Chromatographic resolution and quantitative assay of CNS tissue sphingoids and sphingolipids. J. Lipid Res. 42, 301–308 (2001).

    CAS  PubMed  Google Scholar 

  43. Ekroos, K., Chernushevich, I.V., Simons, K. & Shevchenko, A. Quantitative profiling of phospholipids by multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer. Anal. Chem. 74, 941–949 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank colleagues who kindly provided plasmids: P. Keller and J. White (ManII), M. Rolls (Sec61β) and R.E. Tsien (mRFP1). We thank M. Gruner and A. Rudolph for NMR analysis and K. Sandhoff for helpful suggestions. We acknowledge financial support by the Deutsche Forschungsgemeinschaft (SFB-TR 13, D2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Thiele.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Mass spectrometric analysis of cellular glycerophospholipids containing the t/c16:5-fatty acid. (PDF 2477 kb)

Supplementary Fig. 2

Molecular modeling structures of stearic acid, t18:5-fatty acid, c18:5-fatty acid, and oleic acid. (PDF 531 kb)

Supplementary Table 1

Pentaene lipids of COS7 cells labeled with t16:5- or c16:5-fatty acids. (PDF 22 kb)

Supplementary Methods (PDF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuerschner, L., Ejsing, C., Ekroos, K. et al. Polyene-lipids: A new tool to image lipids. Nat Methods 2, 39–45 (2005). https://doi.org/10.1038/nmeth728

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth728

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing