Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Reversible RNA modifications in meiosis and pluripotency

Abstract

Post-transcriptional RNA modifications were discovered several decades ago, but the reversible nature of RNA modifications has only recently been discovered. Owing to technological advances, knowledge of epitranscriptomic marks and their writers, readers and erasers has recently advanced tremendously. Here we focus on the roles of the dynamic methylation and demethylation of internal adenosines in mRNA in germ cells and pluripotent stem cells.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General aspects of eukaryotic meiosis.
Figure 2: Dynamic m6A modifications at single-cell resolution.

References

  1. Duechler, M., Leszczyńska, G., Sochacka, E. & Nawrot, B. Cell. Mol. Life Sci. 73, 3075–3095 (2016).

    Article  CAS  Google Scholar 

  2. Patil, D.P. et al. Nature 537, 369–373 (2016).

    Article  CAS  Google Scholar 

  3. Zhao, B.S., Roundtree, I.A. & He, C. Nat. Rev. Mol. Cell Biol. http://dx.doi.org/10.1038/nrm.2016.132 (2016).

  4. Darnell, J.E. Jr. RNA 19, 443–460 (2013).

    Article  CAS  Google Scholar 

  5. Jia, G. et al. Nat. Chem. Biol. 7, 885–887 (2011).

    Article  CAS  Google Scholar 

  6. Zheng, G. et al. Mol. Cell 49, 18–29 (2013).

    Article  CAS  Google Scholar 

  7. Li, X. et al. Nat. Chem. Biol. 12, 311–316 (2016).

    Article  CAS  Google Scholar 

  8. Dominissini, D. et al. Nature 530, 441–446 (2016).

    Article  CAS  Google Scholar 

  9. Susor, A., Jansova, D., Anger, M. & Kubelka, M. Cell Tissue Res. 363, 69–84 (2016).

    Article  CAS  Google Scholar 

  10. Shah, J.C. & Clancy, M.J. Mol. Cell. Biol. 12, 1078–1086 (1992).

    Article  CAS  Google Scholar 

  11. Sripati, C.E., Groner, Y. & Warner, J.R. J. Biol. Chem. 251, 2898–2904 (1976).

    CAS  PubMed  Google Scholar 

  12. Clancy, M.J., Shambaugh, M.E., Timpte, C.S. & Bokar, J.A. Nucleic Acids Res. 30, 4509–4518 (2002).

    Article  CAS  Google Scholar 

  13. Schwartz, S. et al. Cell 155, 1409–1421 (2013).

    Article  CAS  Google Scholar 

  14. Dominissini, D. et al. Nature 485, 201–206 (2012).

    Article  CAS  Google Scholar 

  15. Wang, X. et al. Nature 505, 117–120 (2014).

    Article  Google Scholar 

  16. Ping, X.-L. et al. Cell Res. 24, 177–189 (2014).

    Article  CAS  Google Scholar 

  17. Hongay, C.F., Grisafi, P.L., Galitski, T. & Fink, G.R. Cell 127, 735–745 (2006).

    Article  CAS  Google Scholar 

  18. Hongay, C.F. & Orr-Weaver, T.L. Proc. Natl. Acad. Sci. USA 108, 14855–14860 (2011).

    Article  CAS  Google Scholar 

  19. Wang, Y. et al. Nat. Cell Biol. 16, 191–198 (2014).

    Article  CAS  Google Scholar 

  20. Geula, S. et al. Science 347, 1002–1006 (2015).

    Article  CAS  Google Scholar 

  21. Batista, P.J. et al. Cell Stem Cell 15, 707–719 (2014).

    Article  CAS  Google Scholar 

  22. Bradley, A., Evans, M., Kaufman, M.H. & Robertson, E. Nature 309, 255–256 (1984).

    Article  CAS  Google Scholar 

  23. Reubinoff, B.E., Pera, M.F., Fong, C.Y., Trounson, A. & Bongso, A. Nat. Biotechnol. 18, 399–404 (2000).

    Article  CAS  Google Scholar 

  24. Zhao, B.S. & He, C. Genome Biol. 16, 43 (2015).

    Article  Google Scholar 

  25. Niwa, H., Miyazaki, J. & Smith, A.G. Nat. Genet. 24, 372–376 (2000).

    Article  CAS  Google Scholar 

  26. Filipczyk, A. et al. Nat. Cell Biol. 17, 1235–1246 (2015).

    Article  CAS  Google Scholar 

  27. Alarcón, C.R., Lee, H., Goodarzi, H., Halberg, N. & Tavazoie, S.F. Nature 519, 482–485 (2015).

    Article  Google Scholar 

  28. Roost, C. et al. J. Am. Chem. Soc. 137, 2107–2115 (2015).

    Article  CAS  Google Scholar 

  29. Ke, S. et al. Genes Dev. 29, 2037–2053 (2015).

    Article  CAS  Google Scholar 

  30. Alarcón, C.R. et al. Cell 162, 1299–1308 (2015).

    Article  Google Scholar 

  31. Lin, S., Choe, J., Du, P., Triboulet, R. & Gregory, R.I. Mol. Cell 62, 335–345 (2016).

    Article  CAS  Google Scholar 

  32. Wickramasinghe, V.O. & Laskey, R.A. Nat. Rev. Mol. Cell Biol. 16, 431–442 (2015).

    Article  CAS  Google Scholar 

  33. Wang, X. et al. Cell 161, 1388–1399 (2015).

    Article  CAS  Google Scholar 

  34. Chen, T. et al. Cell Stem Cell 16, 289–301 (2015).

    Article  CAS  Google Scholar 

  35. Aguilo, F. et al. Cell Stem Cell 17, 689–704 (2015).

    Article  CAS  Google Scholar 

  36. Tuck, M.T., James, C.B., Kelder, B. & Kopchick, J.J. Cancer Lett. 103, 107–113 (1996).

    Article  CAS  Google Scholar 

  37. Garcia-Closas, M. et al. Nat. Genet. 45, 392–398, e1–e2 (2013).

    Article  CAS  Google Scholar 

  38. Iles, M.M. et al. Nat. Genet. 45, 428–432, e1 (2013).

    Article  CAS  Google Scholar 

  39. Zhang, C. et al. Proc. Natl. Acad. Sci. USA 113, E2047–E2056 (2016).

    Article  CAS  Google Scholar 

  40. Ougland, R. et al. Mol. Cell 16, 107–116 (2004).

    Article  CAS  Google Scholar 

  41. Liu, F. et al. Cell 167, 816–828.e16 (2016).

    Article  CAS  Google Scholar 

  42. Haag, S. et al. EMBO J. 35, 2104–2119 (2016).

    Article  CAS  Google Scholar 

  43. van den Born, E. et al. Nat. Commun. 2, 172 (2011).

    Article  Google Scholar 

  44. Fu, Y. et al. Angew. Chem. Int. Ed. Engl. 49, 8885–8888 (2010).

    Article  CAS  Google Scholar 

  45. Van Haute, L. et al. Nat. Commun. 7, 12039 (2016).

    Article  CAS  Google Scholar 

  46. Kirchner, S. & Ignatova, Z. Nat. Rev. Genet. 16, 98–112 (2015).

    Article  CAS  Google Scholar 

  47. Dahl, J.A. et al. Nature 537, 548–552 (2016).

    Article  CAS  Google Scholar 

  48. Li, L., Zheng, P. & Dean, J. Development 137, 859–870 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The writing of this Commentary was supported by the Oslo University Hospital, the Norwegian Cancer Society and the Norwegian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Klungland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klungland, A., Dahl, J., Greggains, G. et al. Reversible RNA modifications in meiosis and pluripotency. Nat Methods 14, 18–22 (2017). https://doi.org/10.1038/nmeth.4111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.4111

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer