Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

UMI-4C for quantitative and targeted chromosomal contact profiling

Abstract

We developed a targeted chromosome conformation capture (4C) approach that uses unique molecular identifiers (UMIs) to derive high-complexity quantitative chromosome contact profiles with controlled signal-to-noise ratios. UMI-4C detects chromosomal interactions with improved sensitivity and specificity, and it can easily be multiplexed to allow robust comparison of contact distributions between loci and conditions. This approach may open the way to the incorporation of contact distributions into quantitative models of gene regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Description of UMI-4C.
Figure 2: UMI-4C reproducibility.
Figure 3: UMI-4C analysis of GATA1.
Figure 4: Multiplexing UMI-4C in the HBB locus.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  CAS  Google Scholar 

  2. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    Article  CAS  Google Scholar 

  3. Roadmap Epigenomics Consortium. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

  4. Neph, S. et al. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489, 83–90 (2012).

    Article  CAS  Google Scholar 

  5. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  6. Hakim, O. et al. Diverse gene reprogramming events occur in the same spatial clusters of distal regulatory elements. Genome Res. 21, 697–706 (2011).

    Article  CAS  Google Scholar 

  7. Apostolou, E. et al. Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming. Cell Stem Cell 12, 699–712 (2013).

    Article  CAS  Google Scholar 

  8. Sanyal, A., Lajoie, B.R., Jain, G. & Dekker, J. The long-range interaction landscape of gene promoters. Nature 489, 109–113 (2012).

    Article  CAS  Google Scholar 

  9. Nora, E.P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    Article  CAS  Google Scholar 

  10. Splinter, E. et al. The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev. 25, 1371–1383 (2011).

    Article  CAS  Google Scholar 

  11. Dixon, J.R. et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331–336 (2015).

    Article  CAS  Google Scholar 

  12. de Wit, E. et al. The pluripotent genome in three dimensions is shaped around pluripotency factors. Nature 501, 227–231 (2013).

    Article  CAS  Google Scholar 

  13. de Wit, E. & de Laat, W. A decade of 3C technologies: insights into nuclear organization. Genes Dev. 26, 11–24 (2012).

    Article  CAS  Google Scholar 

  14. Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–1354 (2006).

    Article  CAS  Google Scholar 

  15. van de Werken, H.J.G. et al. Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat. Methods 9, 969–972 (2012).

    Article  CAS  Google Scholar 

  16. Stadhouders, R. et al. Multiplexed chromosome conformation capture sequencing for rapid genome-scale high-resolution detection of long-range chromatin interactions. Nat. Protoc. 8, 509–524 (2013).

    Article  CAS  Google Scholar 

  17. Splinter, E., de Wit, E., van de Werken, H.J.G., Klous, P. & de Laat, W. Determining long-range chromatin interactions for selected genomic sites using 4C-seq technology: from fixation to computation. Methods 58, 221–230 (2012).

    Article  CAS  Google Scholar 

  18. Jäger, R. et al. Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci. Nat. Commun. 6, 6178 (2015).

    Article  Google Scholar 

  19. Hughes, J.R. et al. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat. Genet. 46, 205–212 (2014).

    Article  CAS  Google Scholar 

  20. Mifsud, B. et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet. 47, 598–606 (2015).

    Article  CAS  Google Scholar 

  21. Kolovos, P. et al. Targeted Chromatin Capture (T2C): a novel high resolution high throughput method to detect genomic interactions and regulatory elements. Epigenetics Chromatin 7, 10 (2014).

    Article  Google Scholar 

  22. Davies, J.O.J. et al. Multiplexed analysis of chromosome conformation at vastly improved sensitivity. Nat. Methods 13, 74–80 (2016).

    Article  CAS  Google Scholar 

  23. Sahlén, P. et al. Genome-wide mapping of promoter-anchored interactions with close to single-enhancer resolution. Genome Biol. 16, 156 (2015).

    Article  Google Scholar 

  24. Sanborn, A.L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl. Acad. Sci. USA 112, E6456–E6465 (2015).

    Article  CAS  Google Scholar 

  25. Ghavi-Helm, Y. et al. Enhancer loops appear stable during development and are associated with paused polymerase. Nature 512, 96–100 (2014).

    Article  CAS  Google Scholar 

  26. Yaffe, E. & Tanay, A. Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat. Genet. 43, 1059–1065 (2011).

    Article  CAS  Google Scholar 

  27. Ay, F., Bailey, T.L. & Noble, W.S. Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res. 24, 999–1011 (2014).

    Article  CAS  Google Scholar 

  28. Dixon, J.R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  Google Scholar 

  29. Hu, M. et al. HiCNorm: removing biases in Hi-C data via Poisson regression. Bioinformatics 28, 3131–3133 (2012).

    Article  CAS  Google Scholar 

  30. Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods 9, 72–74 (2012).

    Article  CAS  Google Scholar 

  31. Bantignies, F. et al. Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. Cell 144, 214–226 (2011).

    Article  CAS  Google Scholar 

  32. Rao, S.S.P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  Google Scholar 

  33. Valverde-Garduno, V. et al. Differences in the chromatin structure and cis-element organization of the human and mouse GATA1 loci: implications for cis-element identification. Blood 104, 3106–3116 (2004).

    Article  CAS  Google Scholar 

  34. Xu, J. et al. Combinatorial assembly of developmental stage-specific enhancers controls gene expression programs during human erythropoiesis. Dev. Cell 23, 796–811 (2012).

    Article  CAS  Google Scholar 

  35. Porcu, M. et al. Mutation of the receptor tyrosine phosphatase PTPRC (CD45) in T-cell acute lymphoblastic leukemia. Blood 119, 4476–4479 (2012).

    Article  CAS  Google Scholar 

  36. Ye, J. et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13, 134 (2012).

    Article  CAS  Google Scholar 

  37. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  Google Scholar 

  38. Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).

    Article  CAS  Google Scholar 

  39. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  Google Scholar 

  40. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research in the Tanay Lab was supported by the European Research Council, the MODHEP project and the Israeli Science Foundation. Research in the Izraeli Lab was supported by the Israel Science Foundation, the Waxman Cancer Research Foundation and the Dotan Center for Hematological Malignancies at Tel Aviv University. This work was performed in partial fulfillment of the requirements for a PhD degree by O.S.

Author information

Authors and Affiliations

Authors

Contributions

O.S., S.I. and A.T. designed the study. O.S. and Z.M. developed the experimental protocol with help and reagents from N.O.-E., P.O.-C., Y.L. and G.L. O.S. performed experiments. O.S. and A.T. analyzed the data and developed the pipeline. O.S. and A.T. wrote the paper. S.I. and A.T. supervised research.

Corresponding author

Correspondence to Amos Tanay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Tables 1–4 (PDF 17266 kb)

Supplementary Software

UMI-4C analysis software. (ZIP 1488 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwartzman, O., Mukamel, Z., Oded-Elkayam, N. et al. UMI-4C for quantitative and targeted chromosomal contact profiling. Nat Methods 13, 685–691 (2016). https://doi.org/10.1038/nmeth.3922

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3922

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics