Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A practical guide to photoacoustic tomography in the life sciences

Abstract

The life sciences can benefit greatly from imaging technologies that connect microscopic discoveries with macroscopic observations. One technology uniquely positioned to provide such benefits is photoacoustic tomography (PAT), a sensitive modality for imaging optical absorption contrast over a range of spatial scales at high speed. In PAT, endogenous contrast reveals a tissue's anatomical, functional, metabolic, and histologic properties, and exogenous contrast provides molecular and cellular specificity. The spatial scale of PAT covers organelles, cells, tissues, organs, and small animals. Consequently, PAT is complementary to other imaging modalities in contrast mechanism, penetration, spatial resolution, and temporal resolution. We review the fundamentals of PAT and provide practical guidelines for matching PAT systems with research needs. We also summarize the most promising biomedical applications of PAT, discuss related challenges, and envision PAT's potential to lead to further breakthroughs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles of photoacoustic tomography (PAT).
Figure 2: Representative implementations of PAT.
Figure 3: Practical guide to mapping the desired imaging depth, speed, and contrast to the optimal PAT implementation.
Figure 4: Photon propagation regimes in soft tissue and the penetration limits of representative high-resolution optical imaging modalities.
Figure 5: Multiscale PAT of single cells, whole-body small animals, and humans.
Figure 6: In vivo PA molecular imaging.
Figure 7: Representative in vivo PAT applications in life sciences.

Similar content being viewed by others

References

  1. Bell, A.G. Upon the production and reproduction of sound by light. Am. J. Sci. 20, 305–324 (1880).

    Google Scholar 

  2. Bowen, T. Radiation-induced thermoacoustic imaging. US Patent 4,385,634 (1983).

  3. Oraevsky, A.A., Jacques, S.L. & Tittel, F.K. Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves. In Laser-Tissue Interaction IV (Proceedings of the SPIE, vol. 1882) (eds. Jacques, S.L. & Katzir, A.) 86–101 (SPIE, 1993).

  4. Kruger, R.A. & Liu, P.Y. Photoacoustic ultrasound: pulse production and detection of 0.5% Liposyn. Med. Phys. 21, 1179–1184 (1994).

    CAS  PubMed  Google Scholar 

  5. Kruger, R.A. Photoacoustic ultrasound. Med. Phys. 21, 127–131 (1994).

    CAS  PubMed  Google Scholar 

  6. Oraevsky, A.A., Esenaliev, R.O., Jacques, S.L., Thomsen, S.L. & Tittel, F.K. Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers. In Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation (Proceedings of the SPIE, vol. 2389) (eds. Chance, B. & Alfano, R.R.) 198–208 (SPIE, 1995).

  7. Oraevsky, A.A., Esenaliev, R.O., Jacques, S.L. & Tittel, F.K. Laser optoacoustic tomography for medical diagnostics: principles. In Biomedical Sensing, Imaging, and Tracking Technologies I (Proceedings of the SPIE, vol. 2676) (eds. Lieberman R.A., Podbielska, H. & Vo-Dinh, T.) 84–90 (SPIE, 1996).

  8. Kruger, R.A., Liu, P.Y., Fang, Y.R. & Appledorn, C.R. Photoacoustic ultrasound (Paus)–reconstruction tomography. Med. Phys. 22, 1605–1609 (1995).

    CAS  PubMed  Google Scholar 

  9. Hoelen, C.G.A., de Mul, F.F.M., Pongers, R. & Dekker, A. Three-dimensional photoacoustic imaging of blood vessels in tissue. Opt. Lett. 23, 648–650 (1998).

    CAS  PubMed  Google Scholar 

  10. Wang, L.V., Zhao, X., Sun, H. & Ku, G. Microwave-induced acoustic imaging of biological tissues. Rev. Sci. Instrum. 70, 3744–3748 (1999).

    CAS  Google Scholar 

  11. Wang, X.D. et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 21, 803–806 (2003).

    CAS  PubMed  Google Scholar 

  12. Zhang, H.F., Maslov, K., Stoica, G. & Wang, L.V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24, 848–851 (2006).

    CAS  PubMed  Google Scholar 

  13. Li, M.-L. et al. Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography. Proc. IEEE 96, 481–489 (2008).

    CAS  Google Scholar 

  14. De la Zerda, A. et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 3, 557–562 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Razansky, D. et al. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nat. Photonics 3, 412–417 (2009).

    CAS  Google Scholar 

  16. Wang, H.W. et al. Label-free bond-selective imaging by listening to vibrationally excited molecules. Phys. Rev. Lett. 106, 238106 (2011).

    PubMed  PubMed Central  Google Scholar 

  17. Yakovlev, V.V. et al. Stimulated Raman photoacoustic imaging. Proc. Natl. Acad. Sci. USA 107, 20335–20339 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. de la Zerda, A., Kim, J.W., Galanzha, E.I., Gambhir, S.S. & Zharov, V.P. Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test and photothermal theranostics. Contrast Media Mol. Imaging 6, 346–369 (2011).

    CAS  PubMed  Google Scholar 

  19. Zackrisson, S., van de Ven, S.M.W.Y. & Gambhir, S.S. Light in and sound out: emerging translational strategies for photoacoustic imaging. Cancer Res. 74, 979–1004 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Burgholzer, P., Grün, H. & Sonnleitner, A. Photoacoustic tomography: sounding out fluorescent proteins. Nat. Photonics 3, 378–379 (2009).

    CAS  Google Scholar 

  21. Yang, J.M. et al. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat. Med. 18, 1297–1302 (2012).

    CAS  PubMed  Google Scholar 

  22. Bai, X.S. et al. Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter. PLoS ONE 9, e92463 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. Jansen, K., van der Steen, A.F.W., van Beusekom, H.M.M., Oosterhuis, J.W. & van Soest, G. Intravascular photoacoustic imaging of human coronary atherosclerosis. Opt. Lett. 36, 597–599 (2011).

    PubMed  Google Scholar 

  24. Zhang, E.Z. & Beard, P.C. A miniature all-optical photoacoustic imaging probe. In Photons Plus Ultrasound: Imaging and Sensing 2011 (Proceedings of the SPIE, vol. 7899) (eds. Oraevsky, A.A. & Wang, L.V.) 78991F (SPIE, 2011).

  25. Kim, J., Lee, D., Jung, U. & Kim, C. Photoacoustic imaging platforms for multimodal imaging. Ultrasonography 34, 88–97 (2015).

    PubMed  PubMed Central  Google Scholar 

  26. Vionnet, L. et al. 24-MHz scanner for optoacousticimaging of skin and burn. IEEE Trans. Med. Imaging 33, 535–545 (2014).

    PubMed  Google Scholar 

  27. Burton, N.C. et al. Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization. Neuroimage 65, 522–528 (2013).

    PubMed  Google Scholar 

  28. Deán-Ben, X.L. & Razansky, D. Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography. Light-Sci. Appl. 3, e137 (2014).

    Google Scholar 

  29. Kruger, R.A., Lam, R.B., Reinecke, D.R., Del Rio, S.P. & Doyle, R.P. Photoacoustic angiography of the breast. Med. Phys. 37, 6096–6100 (2010).

    PubMed  PubMed Central  Google Scholar 

  30. Zhang, E., Laufer, J. & Beard, P. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues. Appl. Opt. 47, 561–577 (2008).

    CAS  PubMed  Google Scholar 

  31. Brecht, H.P. et al. Whole-body three-dimensional optoacoustic tomography system for small animals. J. Biomed. Opt. 14, 064007 (2009).

    PubMed  PubMed Central  Google Scholar 

  32. Xu, M.H. & Wang, L.V. Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. IEEE Trans. Med. Imaging 21, 814–822 (2002).

    PubMed  Google Scholar 

  33. Treeby, B.E. & Cox, B.T. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 15, 021314 (2010).

    PubMed  Google Scholar 

  34. Yao, J., Xia, J. & Wang, L.V. Multiscale functional and molecular photoacoustic tomography. Ultrason. Imaging 38, 44–62 (2016).

    PubMed  Google Scholar 

  35. Wang, L.V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, L.D., Maslov, K., Xing, W.X., Garcia-Uribe, A. & Wang, L.V. Video-rate functional photoacoustic microscopy at depths. J. Biomed. Opt. 17, 106007 (2012).

    PubMed  PubMed Central  Google Scholar 

  37. Jeon, M., Kim, J. & Kim, C. Multiplane spectroscopic whole-body photoacoustic imaging of small animals in vivo. Med. Biol. Eng. Comput. 54, 283–294 (2014).

    PubMed  Google Scholar 

  38. Mitcham, T., Dextraze, K., Taghavi, H., Melancon, M. & Bouchard, R. Photoacoustic imaging driven by an interstitial irradiation source. Photoacoustics 3, 45–54 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. Horstmeyer, R., Ruan, H.W. & Yang, C.H. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics 9, 563–571 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Galanzha, E.I., Shashkov, E.V., Spring, P.M., Suen, J.Y. & Zharov, V.P. In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser. Cancer Res. 69, 7926–7934 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Strohm, E.M., Berndl, E.S. & Kolios, M.C. High frequency label-free photoacoustic microscopy of single cells. Photoacoustics 1, 49–53 (2013).

    PubMed  PubMed Central  Google Scholar 

  42. Danielli, A. et al. Label-free photoacoustic nanoscopy. J. Biomed. Opt. 19, 086006 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. Goy, A.S. & Fleischer, J.W. Resolution enhancement in nonlinear photoacoustic imaging. Appl. Phys. Lett. 107, 211102 (2015).

    Google Scholar 

  44. Lee, S.-Y. et al. In vivo sub-femtoliter resolution photoacoustic microscopy with higher frame rates. Sci. Rep. 5, 15421 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nedosekin, D.A., Galanzha, E.I., Dervishi, E., Biris, A.S. & Zharov, V.P. Super-resolution nonlinear photothermal microscopy. Small 10, 135–142 (2014).

    CAS  PubMed  Google Scholar 

  46. Wang, L., Zhang, C. & Wang, L.V. Grueneisen relaxation photoacoustic microscopy. Phys. Rev. Lett. 113, 174301 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. Yao, J.J., Wang, L.D., Li, C.Y., Zhang, C. & Wang, L.V. Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging. Phys. Rev. Lett. 112, 014302 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. Yao, J. et al. Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe. Nat. Methods 13, 67–73 (2016).

    CAS  PubMed  Google Scholar 

  49. Yao, J.J. & Wang, L.V. Photoacoustic microscopy. Laser Photonics Rev 7, 758–778 (2013).

    Google Scholar 

  50. Liang, J.Y. et al. Random-access optical-resolution photoacoustic microscopy using a digital micromirror device. Opt. Lett. 38, 2683–2686 (2013).

    PubMed  PubMed Central  Google Scholar 

  51. Song, W. et al. Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform. J. Biomed. Opt. 17, 061206 (2012).

    PubMed  PubMed Central  Google Scholar 

  52. Kim, J.Y., Lee, C., Park, K., Lim, G. & Kim, C. Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner. Sci. Rep. 5, 7932 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yao, J. et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods 12, 407–410 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. American National Standards Institute. American National Standard for SafeUse of Lasers, ANSI Z136.1 (American National Standard Institute, 2007).

  55. Nuster, R., Zangerl, G., Haltmeier, M. & Paltauf, G. Full field detection in photoacoustic tomography. Opt. Express 18, 6288–6299 (2010).

    CAS  PubMed  Google Scholar 

  56. Lamont, M. & Beard, P.C. 2D imaging of ultrasound fields using CCD array to map output of Fabry–Perot polymer film sensor. Electron. Lett. 42, 187–189 (2006).

    Google Scholar 

  57. Luke, G.P., Yeager, D. & Emelianov, S.Y. Biomedical applications of photoacoustic imaging with exogenous contrast agents. Ann. Biomed. Eng. 40, 422–437 (2012).

    PubMed  Google Scholar 

  58. Weber, J., Beard, P.C. & Bohndiek, S.E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 13, 639–650 (2016).

    CAS  PubMed  Google Scholar 

  59. Yao, D.K., Chen, R.M., Maslov, K., Zhou, Q.F. & Wang, L.V. Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei. J. Biomed. Opt. 17, 056004 (2012).

    PubMed  PubMed Central  Google Scholar 

  60. Xu, Z., Zhu, Q.I. & Wang, L.V. In vivo photoacoustic tomography of mouse cerebral edema induced by cold injury. J. Biomed. Opt. 16, 066020 (2011).

    PubMed  PubMed Central  Google Scholar 

  61. Akers, W.J. et al. Multimodal sentinel lymph node mapping with single-photon emission computed tomography (SPECT)/computed tomography (CT) and photoacoustic tomography. Transl. Res. 159, 175–181 (2012).

    PubMed  Google Scholar 

  62. Krumholz, A., Shcherbakova, D.M., Xia, J., Wang, L.V. & Verkhusha, V.V. Multicontrast photoacoustic in vivo imaging using near-infrared fluorescent proteins. Sci. Rep. 4, 3939 (2014).

    PubMed  PubMed Central  Google Scholar 

  63. Kim, J.W., Galanzha, E.I., Shashkov, E.V., Moon, H.M. & Zharov, V.P. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat. Nanotechnol. 4, 688–694 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cox, B., Laufer, J.G., Arridge, S.R. & Beard, P.C. Quantitative spectroscopic photoacoustic imaging: a review. J. Biomed. Opt. 17, 061202 (2012).

    PubMed  Google Scholar 

  65. Tzoumas, S., Nunes, A., Deliolanis, N.C. & Ntziachristos, V. Effects of multispectral excitation on the sensitivity of molecular optoacoustic imaging. J. Biophotonics 8, 629–637 (2015).

    PubMed  Google Scholar 

  66. Taruttis, A., Morscher, S., Burton, N.C., Razansky, D. & Ntziachristos, V. Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs. PLoS ONE 7, e30491 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Deliolanis, N.C. et al. Deep-tissue reporter-gene imaging with fluorescence and optoacoustic tomography: a performance overview. Mol. Imaging Biol. 16, 652–660 (2014).

    PubMed  Google Scholar 

  68. Filonov, G.S. et al. Deep-tissue photoacoustic tomography of a genetically encoded near-infrared fluorescent probe. Angew. Chem. Int. Ed. Engl. 51, 1448–1451 (2012).

    CAS  PubMed  Google Scholar 

  69. Galanzha, E.I. et al. Photoacoustic and photothermal cytometry using photoswitchable proteins and nanoparticles with ultrasharp resonances. J. Biophotonics 8, 81–93 (2013).

    PubMed  Google Scholar 

  70. Jathoul, A.P. et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nat. Photonics 9, 239–246 (2015).

    CAS  Google Scholar 

  71. Laufer, J., Jathoul, A., Pule, M. & Beard, P. In vitro characterization of genetically expressed absorbing proteins using photoacoustic spectroscopy. Biomed. Opt. Express 4, 2477–2490 (2013).

    PubMed  PubMed Central  Google Scholar 

  72. Levi, J. et al. Design, synthesis, and imaging of an activatable photoacoustic probe. J. Am. Chem. Soc. 132, 11264–11269 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Laufer, J., Zhang, E., Raivich, G. & Beard, P. Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner. Appl. Opt. 48, D299–D306 (2009).

    PubMed  Google Scholar 

  74. Yao, J. et al. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo. Neuroimage 64, 257–266 (2013).

    PubMed  Google Scholar 

  75. Nasiriavanaki, M. et al. High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain. Proc. Natl. Acad. Sci. USA 111, 21–26 (2014).

    CAS  PubMed  Google Scholar 

  76. Jo, J. & Yang, X. Functional photoacoustic imaging to observe regional brain activation induced by cocaine hydrochloride. J. Biomed. Opt. 16, 090506 (2011).

    PubMed  PubMed Central  Google Scholar 

  77. Liao, L.D. et al. Imaging brain hemodynamic changes during rat forepaw electrical stimulation using functional photoacoustic microscopy. Neuroimage 52, 562–570 (2010).

    PubMed  Google Scholar 

  78. Pilatou, M.C., Marani, E., de Mul, F.F. & Steenbergen, W. Photoacoustic imaging of brain perfusion on albino rats by using evans blue as contrast agent. Arch. Physiol. Biochem. 111, 389–397 (2003).

    CAS  PubMed  Google Scholar 

  79. Yao, J. & Wang, L.V. Photoacoustic brain imaging: from microscopic to macroscopic scales. Neurophotonics 1, 1877516 (2014).

    PubMed  Google Scholar 

  80. Deng, Z.L., Wang, Z., Yang, X.Q., Luo, Q.M. & Gong, H. In vivo imaging of hemodynamics and oxygen metabolism in acute focal cerebral ischemic rats with laser speckle imaging and functional photoacoustic microscopy. J. Biomed. Opt. 17, 081415 (2012).

    PubMed  Google Scholar 

  81. Tsytsarev, V., Rao, B., Maslov, K.I., Li, L. & Wang, L.V. Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts. J. Neurosci. Methods 216, 142–145 (2013).

    PubMed  PubMed Central  Google Scholar 

  82. Tang, J.B. et al. Noninvasive high-speed photoacoustic tomography of cerebral hemodynamics in awake-moving rats. J. Cereb. Blood Flow Metab. 35, 1224–1232 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Strohm, E.M., Moore, M.J. & Kolios, M.C. Single cell photoacoustic microscopy: a review. IEEE J. Sel. Top. Quantum Electron. 22, 6801215 (2015).

    Google Scholar 

  84. Bost, W. et al. High frequency optoacoustic microscopy. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 5883–5886 (2009).

    Google Scholar 

  85. Strohm, E.M., Berndl, E.S.L. & Kolios, M.C. Probing red blood cell morphology using high-frequency photoacoustics. Biophys. J. 105, 59–67 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, L.D., Maslov, K. & Wang, L.V. Single-cell label-free photoacoustic flowoxigraphy in vivo. Proc. Natl. Acad. Sci. USA 110, 5759–5764 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. He, G., Xu, D., Qin, H., Yang, S. & Xing, D. In vivo cell characteristic extraction and identification by photoacoustic flow cytography. Biomed. Opt. Express 6, 3748–3756 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wilson, K.E., Wang, T.Y. & Willmann, J.K. Acoustic and photoacoustic molecular imaging of cancer. J. Nucl. Med. 54, 1851–1854 (2013).

    PubMed  Google Scholar 

  89. Herzog, E. et al. Optical imaging of cancer heterogeneity with multispectral optoacoustic tomography. Radiology 263, 461–468 (2012).

    PubMed  Google Scholar 

  90. Laufer, J. et al. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. J. Biomed. Opt. 17, 056016 (2012).

    PubMed  Google Scholar 

  91. Staley, J. et al. Growth of melanoma brain tumors monitored by photoacoustic microscopy. J. Biomed. Opt. 15, 040510 (2010).

    PubMed  Google Scholar 

  92. Brannon-Peppas, L. & Blanchette, J.O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 56, 1649–1659 (2004).

    CAS  PubMed  Google Scholar 

  93. Mallidi, S., Luke, G.P. & Emelianov, S. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol. 29, 213–221 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ray, A. et al. Targeted blue nanoparticles as photoacoustic contrast agent for brain tumor delineation. Nano Res. 4, 1163–1173 (2011).

    PubMed  PubMed Central  Google Scholar 

  95. Levi, J. et al. Molecular photoacoustic imaging of follicular thyroid carcinoma. Clin. Cancer Res. 19, 1494–1502 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Yao, J., Maslov, K.I., Zhang, Y., Xia, Y. & Wang, L.V. Label-free oxygen-metabolic photoacoustic microscopy in vivo. J. Biomed. Opt. 16, 076003 (2011).

    PubMed  PubMed Central  Google Scholar 

  97. Shao, Q. et al. In vivo photoacoustic lifetime imaging of tumor hypoxia in small animals. J. Biomed. Opt. 18, 076019 (2013).

    PubMed  PubMed Central  Google Scholar 

  98. Zhang, C., Maslov, K. & Wang, L.V. Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo. Opt. Lett. 35, 3195–3197 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Xia, J. et al. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo. J. Biomed. Opt. 17, 050506 (2012).

    PubMed  PubMed Central  Google Scholar 

  100. Erpelding, T.N. et al. Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system. Radiology 256, 102–110 (2010).

    PubMed  PubMed Central  Google Scholar 

  101. Taruttis, A. & Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics 9, 219–227 (2015).

    CAS  Google Scholar 

  102. Daoudi, K. et al. Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging. Opt. Express 22, 26365–26374 (2014).

    CAS  PubMed  Google Scholar 

  103. Allen, T.J. & Beard, P.C. High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics. Biomed. Opt. Express 7, 1260–1270 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Li, H., Dong, B., Zhang, Z., Zhang, H.F. & Sun, C. A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy. Sci. Rep. 4, 4496 (2014).

    PubMed  PubMed Central  Google Scholar 

  105. Favazza, C.P., Guo, Z., Maslov, K. & Wang, L.V. Optimal oblique light illumination for photoacoustic microscopy beyond the diffusion limit. In Photons Plus Ultrasound: Imaging and Sensing 2011 (Proceedings of the SPIE, 7899) 78990O (SPIE, 2011).

  106. Cho, Y. et al. Handheld photoacoustic tomography probe built using optical-fiber parallel acoustic delay lines. J. Biomed. Opt. 19, 086007 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Ballard for reading the manuscript and R. Zhang for preparing the figures. This work was sponsored by the US National Institutes of Health grants DP1 EB016986 (NIH Director's Pioneer Award), R01 CA186567 (NIH Director's Transformative Research Award), and U01 NS090579 (BRAIN Initiative), all to L.V.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihong V Wang.

Ethics declarations

Competing interests

L.V.W. has a financial interest in Microphotoacoustics, Inc., which, however, did not support this work. J.Y. declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nat Methods 13, 627–638 (2016). https://doi.org/10.1038/nmeth.3925

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3925

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing