Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oxidative release of natural glycans for functional glycomics

Abstract

Glycans have essential roles in biology and the etiology of many diseases. A major hurdle in studying glycans through functional glycomics is the lack of methods to release glycans from diverse types of biological samples. Here we describe an oxidative strategy using household bleach to release all types of free reducing N-glycans and O-glycan-acids from glycoproteins, and glycan nitriles from glycosphingolipids. Released glycans are directly useful in glycomic analyses and can be derivatized fluorescently for functional glycomics. This chemical method overcomes the limitations in glycan generation and promotes archiving and characterization of human and animal glycomes and their functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of ORNG by NaClO with traditional glycomics methods.
Figure 2: NaClO treatment of glycoproteins to release N-glycans.
Figure 3: Lectin binding on the microarray of N-glycan–AEAB conjugates.
Figure 4: NaClO treatment of glycoproteins to release O-glycans.
Figure 5: Release and tagging of glycans from GSLs by NaClO.

Similar content being viewed by others

Ieva Bagdonaite, Stacy A. Malaker, … Nichollas E. Scott

References

  1. Paulson, J.C., Blixt, O. & Collins, B.E. Sweet spots in functional glycomics. Nat. Chem. Biol. 2, 238–248 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Smith, D.F., Song, X. & Cummings, R.D. Use of glycan microarrays to explore specificity of glycan-binding proteins. Methods Enzymol. 480, 417–444 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Cummings, R.D. The repertoire of glycan determinants in the human glycome. Mol. Biosyst. 5, 1087–1104 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Alvarez, R.A. & Blixt, O. Identification of ligand specificities for glycan-binding proteins using glycan arrays. Methods Enzymol. 415, 292–310 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Varki, A. et al. Essentials of Glycobiology 2nd edn. (Cold Spring Harbor Laboratory Press, 2009).

  6. Royle, L. et al. HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal. Biochem. 376, 1–12 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Doneanu, C.E., Chen, W. & Gebler, J.C. Analysis of oligosaccharides derived from heparin by ion-pair reversed-phase chromatography/mass spectrometry. Anal. Chem. 81, 3485–3499 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Ruhaak, L.R. et al. Glycan labeling strategies and their use in identification and quantification. Anal. Bioanal. Chem. 397, 3457–3481 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ly, M. et al. The proteoglycan bikunin has a defined sequence. Nat. Chem. Biol. 7, 827–833 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stumpo, K.A. & Reinhold, V.N. The N-glycome of human plasma. J. Proteome Res. 9, 4823–4830 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Prien, J.M., Ashline, D.J., Lapadula, A.J., Zhang, H. & Reinhold, V.N. The high-mannose glycans from bovine ribonuclease B isomer characterization by ion trap MS. J. Am. Soc. Mass Spectrom. 20, 539–556 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Wada, Y. et al. Comparison of the methods for profiling glycoprotein glycans–HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycobiology 17, 411–422 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Alvarez-Manilla, G. et al. Tools for glycomics: relative quantitation of glycans by isotopic permethylation using 13CH3I. Glycobiology 17, 677–687 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Xia, B., Feasley, C.L., Sachdev, G.P., Smith, D.F. & Cummings, R.D. Glycan reductive isotope labeling for quantitative glycomics. Anal. Biochem. 387, 162–170 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zaia, J. Mass spectrometry and the emerging field of glycomics. Chem. Biol. 15, 881–892 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stevens, J., Blixt, O., Paulson, J.C. & Wilson, I.A. Glycan microarray technologies: tools to survey host specificity of influenza viruses. Natl. Rev. 4, 857–864 (2006).

    CAS  Google Scholar 

  17. Song, X. et al. Novel fluorescent glycan microarray strategy reveals ligands for galectins. Chem. Biol. 16, 36–47 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rillahan, C.D. & Paulson, J.C. Glycan microarrays for decoding the glycome. Annu. Rev. Biochem. 80, 797–823 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Boer, A.R., Hokke, C.H., Deelder, A.M. & Wuhrer, M. General microarray technique for immobilization and screening of natural glycans. Anal. Chem. 79, 8107–8113 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Blixt, O. et al. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. USA 101, 17033–17038 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Song, X. et al. Shotgun glycomics: a microarray strategy for functional glycomics. Nat. Methods 8, 85–90 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Zhu, X. & Schmidt, R.R. New principles for glycoside-bond formation. Angew. Chem. Int. Ed. 48, 1900–1934 (2009).

    Article  CAS  Google Scholar 

  23. Seeberger, P.H. Automated carbohydrate synthesis to drive chemical glycomics. Chem. Commun. 10, 1115–1121 (2003).

    Article  CAS  Google Scholar 

  24. Pozsgay, V. Recent developments in synthetic oligosaccharide-based bacterial vaccines. Curr. Top. Med. Chem. 8, 126–140 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Murata, T. & Usui, T. Enzymatic synthesis of oligosaccharides and neoglycoconjugates. Biosci. Biotechnol. Biochem. 70, 1049–1059 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Kanemitsu, T. & Kanie, O. Recent developments in oligosaccharide synthesis: tactics, solid-phase synthesis and library synthesis. Comb. Chem. High Throughput Screen. 5, 339–360 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Xia, B. et al. Versatile fluorescent derivatization of glycans for glycomic analysis. Nat. Methods 2, 845–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Song, X., Xia, B., Lasanajak, Y., Smith, D.F. & Cummings, R.D. Quantifiable fluorescent glycan microarrays. Glycoconj. J. 25, 15–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Song, X., Lasanajak, Y., Xia, B., Smith, D.F. & Cummings, R.D. Fluorescent glycosylamides produced by microscale derivatization of free glycans for natural glycan microarrays. ACS Chem. Biol. 4, 741–750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Song, X. et al. Generation of a natural glycan microarray using 9-fluorenylmethyl chloroformate (FmocCl) as a cleavable fluorescent tag. Anal. Biochem. 395, 151–160 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yosizawa, Z., Sato, T. & Schmid, K. Hydrazinolysis of α-1-acid glycoprotein. Biochim. Biophys. Acta 121, 417–420 (1966).

    Article  CAS  PubMed  Google Scholar 

  32. Huang, Y., Mechref, Y. & Novotny, M.V. Microscale nonreductive release of O-linked glycans for subsequent analysis through MALDI mass spectrometry and capillary electrophoresis. Anal. Chem. 73, 6063–6069 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Ito, M. & Yamagata, T. A novel glycosphingolipid-degrading enzyme cleaves the linkage between the oligosaccharide and ceramide of neutral and acidic glycosphingolipids. J. Biol. Chem. 261, 14278–14282 (1986).

    CAS  PubMed  Google Scholar 

  34. Ito, M. & Yamagata, T. Endoglycoceramidase from Rhodococcus species G-74–2. Methods Enzymol. 179, 488–496 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Plummer, T.H. Jr. & Tarentino, A.L. Purification of the oligosaccharide-cleaving enzymes of Flavobacterium meningosepticum. Glycobiology 1, 257–263 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Ashline, D.J. et al. Structural characterization by multistage mass spectrometry (MSn) of human milk glycans recognized by human rotaviruses. Mol. Cell. Proteomics 13, 2961–2974 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hawkins, C.L. & Davies, M.J. Hypochlorite-induced damage to proteins: formation of nitrogen-centered radicals from lysine residues and their role in protein fragmentation. Biochem. J. 332, 617–625 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pereira, W.E., Hoyano, Y., Summons, R.E., Bacon, V.A. & Duffield, A.M. Chlorination studies. II. Reaction of aqueous hypochlorous acid with α-amino acids and dipeptides. Biochim. Biophys. Acta, Gen. Subj. 313, 170–180 (1973).

    Article  CAS  Google Scholar 

  39. Tretter, V., Altmann, F. & Marz, L. Peptide-N4-(N-acetyl-β-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached α1→3 to the asparagine-linked N-acetylglucosamine residue. Eur. J. Biochem. 199, 647–652 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Guile, G.R. et al. Identification of highly fucosylated N-linked oligosaccharides from the human parotid gland. Eur. J. Biochem. 258, 623–656 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, H. et al. Design and synthesis of glycoprotein-based multivalent glyco-ligands for influenza hemagglutinin and human galectin-3. Bioorg. Med. Chem. 21, 2037–2044 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kajihara, Y. et al. Prompt chemoenzymatic synthesis of diverse complex-type oligosaccharides and its application to the solid-phase synthesis of a glycopeptide with Asn-linked sialyl-undeca- and asialo-nonasaccharides. Chemistry 10, 971–985 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Mine, Y. (ed.) Egg Bioscience and Biotechnology (John Wiley and Sons, Inc., 2008).

  44. Yamamoto, K., Kadowaki, S., Watanabe, J. & Kumagai, H. Transglycosylation activity of Mucor hiemalis endo-β-N-acetylglucosaminidase which transfers complex oligosaccharides to the N-acetylglucosamine moieties of peptides. Biochem. Biophys. Res. Commun. 203, 244–252 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Lundborg, M. & Widmalm, G. Structural analysis of glycans by NMR chemical shift prediction. Anal. Chem. 83, 1514–1517 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Yu, Y. et al. Functional glycomic analysis of human milk glycans reveals the presence of virus receptors and embryonic stem cell biomarkers. J. Biol. Chem. 287, 44784–44799 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Byrd-Leotis, L. et al. Shotgun glycomics of pig lung identifies natural endogenous receptors for influenza viruses. Proc. Natl. Acad. Sci. USA 111, E2241–E2250 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Song, X. et al. Shotgun glycomics: a microarray strategy for functional glycomics. Nat. Methods 8, 85–90 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Yu, Y. et al. Human milk contains novel glycans that are potential decoy receptors for neonatal rotaviruses. Mol. Cell. Proteomics 13, 2944–2960 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goetz, J.A., Novotny, M.V. & Mechref, Y. Enzymatic/chemical release of O-glycans allowing MS analysis at high sensitivity. Anal. Chem. 81, 9546–9552 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Sekiya, S., Wada, Y. & Tanaka, K. Derivatization for stabilizing sialic acids in MALDI-MS. Anal. Chem. 77, 4962–4968 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, C., Fan, W., Zhang, P., Wang, Z. & Huang, L. One-pot nonreductive O-glycan release and labeling with 1-phenyl-3-methyl-5-pyrazolone followed by ESI-MS analysis. Proteomics 11, 4229–4242 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Schnaar, R.L. Isolation of glycosphingolipids. Methods Enzymol. 230, 348–370 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Reddy, C.R., Vijeender, K., Bhusan, P.B., Madhavi, P.P. & Chandrasekhar, S. Reductive N-alkylation of aromatic amines and nitro compounds with nitriles using polymethylhydrosiloxane. Tetrahedr. Lett. 48, 2765–2768 (2007).

    Article  CAS  Google Scholar 

  55. Neogi, S. & Naskar, D. One-pot reductive mono-N-alkylation of aromatic nitro compounds using nitriles as alkylating reagents. Synth. Commun. 41, 1901–1915 (2011).

    Article  CAS  Google Scholar 

  56. Sajiki, H., Ikawa, T. & Hirota, K. Reductive and catalytic monoalkylation of primary amines using nitriles as an alkylating reagent. Org. Lett. 6, 4977–4980 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Nacario, R., Kotakonda, S., Fouchard, D.M.D., Tillekeratne, L.M.V. & Hudson, R.A. Reductive monoalkylation of aromatic and aliphatic nitro compounds and the corresponding amines with nitriles. Org. Lett. 7, 471–474 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Ohno, N. et al. Solubilization of yeast cell-wall β-(1→3)-d-glucan by sodium hypochlorite oxidation and dimethyl sulfoxide extraction. Carbohydr. Res. 316, 161–172 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Rees, M.D., Hawkins, C.L. & Davies, M.J. Hypochlorite-mediated fragmentation of hyaluronan, chondroitin sulfates, and related N-acetyl glucosamines: evidence for chloramide intermediates, free radical transfer reactions, and site-specific fragmentation. J. Am. Chem. Soc. 125, 13719–13733 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Rees, M.D., Pattison, D.I. & Davies, M.J. Oxidation of heparan sulphate by hypochlorite: role of N-chloro derivatives and dichloramine-dependent fragmentation. Biochem. J. 391, 125–134 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rees, M.D. & Davies, M.J. Heparan sulfate degradation via reductive homolysis of its N-chloro derivatives. J. Am. Chem. Soc. 128, 3085–3097 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Weiss, S.J., Lampert, M.B. & Test, S.T. Long-lived oxidants generated by human neutrophils: characterization and bioactivity. Science 222, 625–628 (1983).

    Article  CAS  PubMed  Google Scholar 

  63. Prütz, W.A. Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates. Arch. Biochem. Biophys. 332, 110–120 (1996).

    Article  PubMed  Google Scholar 

  64. Bruggink, C. et al. Glycan profiling of urine, amniotic fluid and ascitic fluid from galactosialidosis patients reveals novel oligosaccharides with reducing end hexose and aldohexonic acid residues. FEBS J. 277, 2970–2986 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Anumula, K.R. & Taylor, P.B. A comprehensive procedure for preparation of partially methylated alditol acetates from glycoprotein carbohydrates. Anal. Biochem. 203, 101–108 (1992).

    Article  CAS  PubMed  Google Scholar 

  66. Laval, G. & Golding, B.T. One-pot sequence for the decarboxylation of α-amino acids. Synlett 4, 542–546 (2003).

    Google Scholar 

Download references

Acknowledgements

We thank J. Heimburg-Molinaro (Beth Israel Deaconess Medical Center) for help in scientific discussion and preparing the manuscript. We thank H. Sun (Wuhan University) for providing rAAL2 lectin. This work was supported by the US National Institutes of Health (EUREKA grant GM085448 to D.F.S., BTRC grant P41GM10369 to R.D.C. and Common Fund Glycoscience grant U01GM116254 to X.S.), the US Department of Health and Human Services contract HHSN272201400004C (NIAID Centers of Excellence for Influenza Research and Surveillance) and the Defense Advanced Research Projects Agency (Grant HR0011-10-00 to R.D.C.).

Author information

Authors and Affiliations

Authors

Contributions

X.S., D.F.S. and R.D.C. conceived the method; X.S., H.J., M.R.K. and Y.L. performed experiments; X.S., D.F.S. and R.D.C. analysed the data and wrote the paper.

Corresponding authors

Correspondence to Xuezheng Song or Richard D Cummings.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15, Supplementary Tables 1–6 and Supplementary Note (PDF 13397 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Ju, H., Lasanajak, Y. et al. Oxidative release of natural glycans for functional glycomics. Nat Methods 13, 528–534 (2016). https://doi.org/10.1038/nmeth.3861

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3861

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing