Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Combining protein and mRNA quantification to decipher transcriptional regulation

Abstract

We combine immunofluorescence and single-molecule fluorescence in situ hybridization (smFISH), followed by automated image analysis, to quantify the concentration of nuclear transcription factors, number of transcription factors bound, and number of nascent mRNAs synthesized at individual gene loci. A theoretical model is used to decipher how transcription factor binding modulates the stochastic kinetics of mRNA production. We demonstrate this approach by examining the regulation of hunchback in the early Drosophila embryo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simultaneous quantification of Bcd protein and hb mRNA in a single embryo.
Figure 2: The regulatory relationship between Bcd concentration and hb transcription.
Figure 3: Transcription factor binding at the hb locus.

Similar content being viewed by others

References

  1. Segal, E. & Widom, J. Nat. Rev. Genet. 10, 443–456 (2009).

    Article  CAS  Google Scholar 

  2. Sanchez, A. & Golding, I. Science 342, 1188–1193 (2013).

    Article  CAS  Google Scholar 

  3. Gregor, T., Tank, D.W., Wieschaus, E.F. & Bialek, W. Cell 130, 153–164 (2007).

    Article  CAS  Google Scholar 

  4. Femino, A.M., Fay, F.S., Fogarty, K. & Singer, R.H. Science 280, 585–590 (1998).

    Article  CAS  Google Scholar 

  5. Raj, A., van den Bogaard, P., Rifkin, S.A., van Oudenaarden, A. & Tyagi, S. Nat. Methods 5, 877–879 (2008).

    Article  CAS  Google Scholar 

  6. Little, S.C., Tikhonov, M. & Gregor, T. Cell 154, 789–800 (2013).

    Article  CAS  Google Scholar 

  7. Lucas, T. et al. Curr. Biol. 23, 2135–2139 (2013).

    Article  CAS  Google Scholar 

  8. Porcher, A. et al. Development 137, 2795–2804 (2010).

    Article  CAS  Google Scholar 

  9. Garcia, H.G., Tikhonov, M., Lin, A. & Gregor, T. Curr. Biol. 23, 2140–2145 (2013).

    Article  CAS  Google Scholar 

  10. Gregor, T., Wieschaus, E.F., McGregor, A.P., Bialek, W. & Tank, D.W. Cell 130, 141–152 (2007).

    Article  CAS  Google Scholar 

  11. Abu-Arish, A., Porcher, A., Czerwonka, A., Dostatni, N. & Fradin, C. Biophys. J. 99, L33–L35 (2010).

    Article  CAS  Google Scholar 

  12. Rosenfeld, N., Young, J.W., Alon, U., Swain, P.S. & Elowitz, M.B. Science 307, 1962–1965 (2005).

    Article  CAS  Google Scholar 

  13. Lopes, F.J., Spirov, A.V. & Bisch, P.M. Dev. Biol. 370, 165–172 (2012).

    Article  Google Scholar 

  14. Ronchi, E., Treisman, J., Dostatni, N., Struhl, G. & Desplan, C. Cell 74, 347–355 (1993).

    Article  CAS  Google Scholar 

  15. Boettiger, A.N. & Levine, M. Cell Rep. 3, 8–15 (2013).

    Article  CAS  Google Scholar 

  16. He, F., Ren, J., Wang, W. & Ma, J. PLoS ONE 6, e19122 (2011).

    Article  CAS  Google Scholar 

  17. Li, X.Y. et al. PLoS Biol. 6, e27 (2008).

    Article  Google Scholar 

  18. Ma, X., Yuan, D., Diepold, K., Scarborough, T. & Ma, J. Development 122, 1195–1206 (1996).

    CAS  PubMed  Google Scholar 

  19. Perry, M.W., Bothma, J.P., Luu, R.D. & Levine, M. Curr. Biol. 22, 2247–2252 (2012).

    Article  CAS  Google Scholar 

  20. Lopes, F.J., Vieira, F.M., Holloway, D.M., Bisch, P.M. & Spirov, A.V. PLoS Comput. Biol. 4, e1000184 (2008).

    Article  Google Scholar 

  21. Ashe, H.L. & Briscoe, J. Development 133, 385–394 (2006).

    Article  CAS  Google Scholar 

  22. Eldar, A. & Elowitz, M.B. Nature 467, 167–173 (2010).

    Article  CAS  Google Scholar 

  23. Niwa, H., Miyazaki, J. & Smith, A.G. Nat. Genet. 24, 372–376 (2000).

    Article  CAS  Google Scholar 

  24. Thummel, C. & Pirrotta, V. Drosoph. Inf. Serv. 71, 150 (1992).

    Google Scholar 

  25. Spradling, A.C. & Rubin, G.M. Science 218, 341–347 (1982).

    Article  CAS  Google Scholar 

  26. Edgar, B.A., Weir, M.P., Schubiger, G. & Kornberg, T. Cell 47, 747–754 (1986).

    Article  CAS  Google Scholar 

  27. Figard, L. & Sokac, A.M. J. Vis. Exp. 49, e2503 (2011).

    Google Scholar 

  28. Kosman, D., Small, S. & Reinitz, J. Dev. Genes Evol. 208, 290–294 (1998).

    Article  CAS  Google Scholar 

  29. Toledano, H., D'Alterio, C., Loza-Coll, M. & Jones, D.L. Nat. Protoc. 7, 1808–1817 (2012).

    Article  CAS  Google Scholar 

  30. Zimmerman, S.G., Peters, N.C., Altaras, A.E. & Berg, C.A. Nat. Protoc. 8, 2158–2179 (2013).

    Article  CAS  Google Scholar 

  31. Namekawa, S.H. & Lee, J.T. Nat. Protoc. 6, 270–284 (2011).

    Article  CAS  Google Scholar 

  32. Skinner, S.O., Sepúlveda, L.A., Xu, H. & Golding, I. Nat. Protoc. 8, 1100–1113 (2013).

    Article  Google Scholar 

  33. Jaeger, J. et al. Nature 430, 368–371 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Reinitz (University of Chicago) for the gift of anti-Hb antibody, and the following people for their generous advice: A. Boettiger, J. Elf, H. Garcia, D. Larson, S. Little, J. Ma, A. Raj, A. Sanchez, E. Segal, D. van Dijk and all members of the Golding and Sokac labs. Work in the Golding lab was supported by grants from the US National Institutes of Health (NIH R01 GM082837), US National Science Foundation (PHY 1147498, PHY 1430124 and PHY 1427654) and Welch Foundation (Q-1759). H.X. is supported by the Burroughs Wellcome Fund Career Award at the Scientific Interface. A.M.S. and L.F. are supported by a grant from the NIH (R01 GM115111), a Computational and Integrative Biomedical Research (CIBR) Center Seed Award and the Curtis Hankamer Basic Research Fund Award from Baylor College of Medicine. We gratefully acknowledge the computing resources provided by the CIBR Center of Baylor College of Medicine.

Author information

Authors and Affiliations

Authors

Contributions

H.X., L.A.S. and I.G. conceived the experimental and analysis methods. H.X. and L.A.S. developed image and data analysis algorithms. H.X. performed the experiments, developed algorithms and theoretical models, and analyzed the data. L.F. performed fly-injection experiments. A.M.S. provided guidance on fly biology and microscopy. I.G. supervised the project. H.X., A.M.S. and I.G. wrote the manuscript.

Corresponding author

Correspondence to Ido Golding.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–18, Supplementary Table 1 and Supplementary Note (PDF 8355 kb)

Supplementary Software

MATLAB code used for image and data analysis. (ZIP 860 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Sepúlveda, L., Figard, L. et al. Combining protein and mRNA quantification to decipher transcriptional regulation. Nat Methods 12, 739–742 (2015). https://doi.org/10.1038/nmeth.3446

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3446

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing