Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-performance probes for light and electron microscopy

Abstract

We describe an engineered family of highly antigenic molecules based on GFP-like fluorescent proteins. These molecules contain numerous copies of peptide epitopes and simultaneously bind IgG antibodies at each location. These 'spaghetti monster' fluorescent proteins (smFPs) distributed well in neurons, notably into small dendrites, spines and axons. smFP immunolabeling localized weakly expressed proteins not well resolved with traditional epitope tags. By varying epitope and scaffold, we generated a diverse family of mutually orthogonal antigens. In cultured neurons and mouse and fly brains, smFP probes allowed robust, orthogonal multicolor visualization of proteins, cell populations and neuropil. smFP variants complement existing tracers and greatly increase the number of simultaneous imaging channels, and they performed well in advanced preparations such as array tomography, super-resolution fluorescence imaging and electron microscopy. In living cells, the probes improved single-molecule image tracking and increased yield for RNA-seq. These probes facilitate new experiments in connectomics, transcriptomics and protein localization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Probe development and preliminary characterization.
Figure 2: Multichannel projection labeling with smFP probes and FPs.
Figure 3: Improved labeling of cells and single-molecule tracking efficiency of proteins in fixed and live preparations.
Figure 4: Utility of smFP_Flag for array tomography (AT).
Figure 5: Utility of smFPs for STORM and immunoEM.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. Waugh, D.S. Making the most of affinity tags. Trends Biotechnol. 23, 316–320 (2005).

    CAS  PubMed  Google Scholar 

  2. Terpe, K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 60, 523–533 (2003).

    CAS  PubMed  Google Scholar 

  3. Wilson, I.A. et al. The structure of an antigenic determinant in a protein. Cell 37, 767–778 (1984).

    CAS  PubMed  Google Scholar 

  4. Evan, G.I., Lewis, G.K., Ramsay, G. & Bishop, J.M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5, 3610–3616 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Southern, J.A., Young, D.F., Heaney, F., Baumgärtner, W.K. & Randall, R.E. Identification of an epitope on the P- and V proteins of simian virus 5 that distinguishes between two isolates with different biological characteristics. J. Gen. Virol. 72, 1551–1557 (1991).

    CAS  PubMed  Google Scholar 

  6. Hopp, T.P. et al. A short polypeptide marker sequence useful for recombinant protein identification and purification. Biotechnology 6, 1204–1210 (1988).

    CAS  Google Scholar 

  7. Schmidt, T.G.M., Koepke, J., Frank, R. & Skerra, A. Molecular interaction between the Strep-tag affinity peptide and its cognate target, streptavidin. J. Mol. Biol. 255, 753–766 (1996).

    CAS  PubMed  Google Scholar 

  8. Park, S.H. et al. Generation and application of new rat monoclonal antibodies against synthetic FLAG and OLLAS tags for improved immunodetection. J. Immunol. Methods 331, 27–38 (2008).

    CAS  PubMed  Google Scholar 

  9. Tanenbaum, M.E., Gilbert, L.A., Qi, L.S., Weissman, J.S. & Vale, R.D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Reits, E. et al. A major role for TPPII in trimming proteasomal degradation products for MHC class I antigen presentation. Immunity 20, 495–506 (2004).

    CAS  PubMed  Google Scholar 

  11. Rizzo, M.A., Davidson, M.W. & Piston, D.W. Fluorescent protein tracking and detection: fluorescent protein structure and color variants. Cold Spring Harb. Protoc. 2009, pdb.top63 (2009).

    PubMed  Google Scholar 

  12. Shaner, N.C., Patterson, G.H. & Davidson, M.W. Advances in fluorescent protein technology. J. Cell Sci. 120, 4247–4260 (2007).

    CAS  PubMed  Google Scholar 

  13. Abedi, M.R., Caponigro, G. & Kamb, A. Green fluorescent protein as a scaffold for intracellular presentation of peptides. Nucleic Acids Res. 26, 623–630 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pédelacq, J.D., Cabantous, S., Tran, T., Terwilliger, T.C. & Waldo, G.S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).

    PubMed  Google Scholar 

  15. Kiss, C. et al. Antibody binding loop insertions as diversity elements. Nucleic Acids Res. 34, e132 (2006).

    PubMed  PubMed Central  Google Scholar 

  16. Lam, A.J. et al. Improving FRET dynamic range with bright green and red fluorescent proteins. Nat. Methods 9, 1005–1012 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ai, H.W., Olenych, S.G., Wong, P., Davidson, M.W., & Campbell, R.E. Hue-shifted monomeric variants of Clavularia cyan fluorescent protein: identification of the molecular determinants of color and applications in fluorescence imaging. BMC Biol. 6, 13 (2008).

    PubMed  PubMed Central  Google Scholar 

  18. Mao, T. et al. Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron 72, 111–123 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Subach, O.M., Cranfill, P.J., Davidson, M.W. & Verkhusha, V.V. An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore. PLoS ONE 6, e28674 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gerfen, C.R., Paletzki, R. & Heintz, N. GENSAT BAC Cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron 80, 1368–1383 (2013).

    CAS  PubMed  Google Scholar 

  21. Ramón y Cajal, S. Histologie du Système Nerveux de l'Homme et des Vértebrés (Instituto Ramón y Cajal, Madrid, 1952) [transl].

  22. Amaral, D.G. & Dent, J.A. Development of the mossy fibers of the dentate gyrus: I. a light and electron microscopic study of the mossy fibers and their expansions. J. Comp. Neurol. 195, 51–86 (1981).

    CAS  PubMed  Google Scholar 

  23. Chicurel, M.E. & Harris, K.M. Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J. Comp. Neurol. 325, 169–182 (1992).

    CAS  PubMed  Google Scholar 

  24. Williams, M.E. et al. Cadherin-9 regulates synapse-specific differentiation in the developing hippocampus. Neuron 71, 640–655 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. McAuliffe, J.J. et al. Altered patterning of dentate granule cell mossy fiber inputs onto CA3 pyramidal cells in limbic epilepsy. Hippocampus 21, 93–107 (2011).

    PubMed  PubMed Central  Google Scholar 

  26. Redies, C. Cadherin expression in the developing vertebrate CNS: from neuromeres to brain nuclei and neural circuits. Exp. Cell Res. 220, 243–256 (1995).

    CAS  PubMed  Google Scholar 

  27. Fannon, A.M. & Colman, D.R. A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherins. Neuron 17, 423–434 (1996).

    CAS  PubMed  Google Scholar 

  28. Uchida, N., Honjo, Y., Johnson, K.R., Wheelock, M.J. & Takeichi, M. The catenin cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J. Cell Biol. 135, 767–779 (1996).

    CAS  PubMed  Google Scholar 

  29. Ritchie, K. & Kusumi, A. Single-particle tracking image microscopy. Methods Enzymol. 360, 618–634 (2003).

    CAS  PubMed  Google Scholar 

  30. Seefeldt, B. et al. Fluorescent proteins for single-molecule fluorescence applications. J. Biophotonics 1, 74–82 (2008).

    CAS  PubMed  Google Scholar 

  31. Ha, T. & Tinnefeld, P. Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu. Rev. Phys. Chem. 63, 595–617 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Martin-Fernandez, M.L. & Clarke, D.T. Single molecule fluorescence detection and tracking in mammalian cells: the state-of-the-art and future perspectives. Int. J. Mol. Sci. 13, 14742–14765 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Los, G.V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    CAS  PubMed  Google Scholar 

  34. Kolberg, K., Puettmann, C., Pardo, A., Fitting, J. & Barth, S. SNAP-tag technology: a general introduction. Curr. Pharm. Des. 19, 5406–5413 (2013).

    CAS  PubMed  Google Scholar 

  35. Gautier, A. et al. An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15, 128–136 (2008).

    CAS  PubMed  Google Scholar 

  36. Gebhardt, J.C. et al. Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat. Methods 10, 421–426 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Micheva, K.D. & Smith, S.J. Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55, 25–36 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lovett-Barron, M. et al. Regulation of neuronal input transformations by tunable dendritic inhibition. Nat. Neurosci. 15, 423–430 (2012).

    CAS  PubMed  Google Scholar 

  39. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    CAS  PubMed  Google Scholar 

  40. Rust, M.J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, S.H. et al. Dlg5 regulates dendritic spine formation and synaptogenesis by controlling subcellular N-cadherin localization. J. Neurosci. 34, 12745–12761 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nern, A., Pfeiffer, B.D. & Rubin, G.M. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc. Natl. Acad. Sci. USA (in the press).

  44. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    CAS  PubMed  Google Scholar 

  45. Aso, Y. et al. The neuronal architecture of the mushroom body provides a logic for associative learning. eLife 3, e04577 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. Wolff, T., Iyer, N.A. & Rubin, G.M. Neuroarchitecture and neuroanatomy of the Drosophila central complex: a GAL4-based dissection of protocerebral bridge neurons and circuits. J. Comp. Neurol. 523, 997–1037 (2015).

    PubMed  Google Scholar 

  47. Tyn, M.T. & Gusek, T.W. Prediction of diffusion coefficients of proteins. Biotechnol. Bioeng. 35, 327–338 (1990).

    CAS  PubMed  Google Scholar 

  48. Petrášek, Z. & Schwille, P. Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys. J. 94, 1437–1448 (2008).

    PubMed  Google Scholar 

  49. Jenett, A. et al. A GAL4-driver line resource for Drosophila neurobiology. Cell Rep. 2, 991–1001 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Paxinos, G. & Franklin, K.B.J. The Mouse Brain in Sterotaxic Coordinates 2nd edn. (Academic Press, 2001).

  51. Barondeau, D.P., Putnam, C.D., Kassmann, C.J., Tainer, J.A. & Getzoff, E.D. Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures. Proc. Natl. Acad. Sci. USA 100, 12111–12116 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Akerboom, J. et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6, 2 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ai, H.W., Henderson, J.N., Remington, S.J. & Campbell, R.E. Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. Biochem. J. 400, 531–540 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gray, N.W., Weimer, R.M., Bureau, I. & Svoboda, K. Rapid redistribution of synaptic PSD-95 in the neocortex in vivo. PLoS Biol. 4, e370 (2006).

    PubMed  PubMed Central  Google Scholar 

  55. Saito, T. & Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol. 240, 237–246 (2001).

    CAS  PubMed  Google Scholar 

  56. Tabata, H. & Nakajima, K. Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103, 865–872 (2001).

    CAS  PubMed  Google Scholar 

  57. Mütze, J. et al. Excitation spectra and brightness optimization of two-photon excited probes. Biophys. J. 102, 934–944 (2012).

    PubMed  PubMed Central  Google Scholar 

  58. Lein, E.S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    CAS  PubMed  Google Scholar 

  59. Rah, J.C. et al. Thalamocortical input onto layer 5 pyramidal neurons measured using quantitative large-scale array tomography. Front. Neural Circuits 7, 177 (2013).

    PubMed  PubMed Central  Google Scholar 

  60. Cardona, A. et al. TrakEM2 software for neural circuit reconstruction. PLoS ONE 7, e38011 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bates, M., Huang, B., Dempsey, G.T. & Zhuang, X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317, 1749–1753 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Henry, G.L., Davis, F.P., Picard, S. & Eddy, S.R. Cell type-specific genomics of Drosophila neurons. Nucleic Acids Res. 40, 9691–9704 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Groth, A.C., Fish, M., Nusse, R. & Calos, M.P. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166, 1775–1782 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cole, S.H. et al. Two functional but noncomplementing Drosophila tyrosine decarboxylase genes: distinct roles for neural tyramine and octopamine in female fertility. J. Biol. Chem. 280, 14948–14955 (2005).

    CAS  PubMed  Google Scholar 

  65. Mazza, D., Abernathy, A., Golob, N., Morisaki, T. & McNally, J.G. A benchmark for chromatin binding measurements in live cells. Nucleic Acids Res. 40, e119 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hayashi-Takanaka, Y. et al. Tracking epigenetic histone modifications in single cells using Fab-based live endogenous modification labeling. Nucleic Acids Res. 39, 6475–6488 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. McNeil, P.L. & Warder, E. Glass beads load macromolecules into living cells. J. Cell Sci. 88, 669–678 (1987).

    PubMed  Google Scholar 

  68. Stasevich, T.J. et al. Regulation of RNA polymerase II activation by histone acetylation in single living cells. Nature 516, 272–275 (2014).

    CAS  PubMed  Google Scholar 

  69. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using μManager. Curr. Protoc. Mol. Biol. 92, 14.20 (2010).

    Google Scholar 

  70. Dedecker, P., Duwé, S., Neely, R.K. & Zhang, J. Localizer: fast, accurate, open-source, and modular software package for superresolution microscopy. J. Biomed. Opt. 17, 126008 (2012).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Cell Culture, Vivarium, Fly Facility, Histology, Electron Microscopy, Media and Molecular Biology Shared Resources, and the Fly Light Project Team, at Janelia. N. Betley, A. Hantman, J. Colonell, J.-C. Rah, S. Sengupta, M. Baird and G. Tervo provided helpful discussions. H. Su and H. Kimura helped with reagents, B. Karsh assisted with image alignment for immunoEM and AT, and H. Rouault helped with statistical analysis. Members of the Looger lab and M. Jefferies provided helpful feedback during the project. A. Hantman and K. Ritola (Janelia) provided the mTagBFP2 virus. This work was supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

S.V., G.M.R. and L.L.L. conceived of the project. L.L.L. performed molecular modeling and designed sequences. S.V. and B.D.P. constructed the clones. S.V. and M.E.W. performed experiments in cultured neurons. M.E.W. performed hippocampal neuron work. B.M.H. and C.R.G. performed four-color labeling experiments. E.B.B. performed AT experiments. C.M.S. and X.Z. designed STORM experiments, and C.M.S. performed STORM imaging and analyzed data. J.J.M. and R.P. performed biophysical characterization. A.N. performed fly experiments. W.-P.L. and Y.W. performed EM. T.J.S. and B.P.E. performed single-molecule imaging. T.T. and G.L.H. performed pulldown experiments. S.V. and L.L.L. led the project.

Corresponding author

Correspondence to Loren L Looger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–18 and Supplementary Tables 1 and 2 (PDF 47159 kb)

Supplementary Video 1

Single-molecule tracking of H2B molecules labelled with EGFP, Halo-tag and Alexa488 substrate, and smFP_FLAG and anti-FLAG antibody (AVI 3130 kb)

Supplementary Video 2

Movie showing 41 silver enhanced immunogold labelled sections expressing smFP_FLAG (MOV 36148 kb)

Supplementary Video 3

3D reconstruction of smFP_FLAG immunogold labelled dendritic segment (AVI 13473 kb)

Supplementary Video 4

Movie showing 30 silver enhanced immunogold labelled sections expressing smFP_FLAG and smFP_myc (MOV 43546 kb)

Supplementary Video 5

3D reconstruction of smFP_FLAG and smFP_myc immunogold labelled dendritic segment (AVI 9003 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viswanathan, S., Williams, M., Bloss, E. et al. High-performance probes for light and electron microscopy. Nat Methods 12, 568–576 (2015). https://doi.org/10.1038/nmeth.3365

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3365

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing