Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

De novo protein structure determination from near-atomic-resolution cryo-EM maps

Abstract

We present a de novo model-building approach that combines predicted backbone conformations with side-chain fit to density to accurately assign sequence into density maps. This method yielded accurate models for six of nine experimental maps at 3.3- to 4.8-Å resolution and produced a nearly complete model for an unsolved map containing a 660-residue heterodimeric protein. This method should enable rapid and reliable protein structure determination from near-atomic-resolution cryo-electron microscopy (cryo-EM) maps.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protocol overview.
Figure 2: High-accuracy model building in near-atomic-resolution cryo-EM maps.
Figure 3: Blind structure determination of the VipA/VipB complex from V. cholerae.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

Referenced accessions

Electron Microscopy Data Bank

Protein Data Bank

References

  1. Hryc, C.F., Chen, D.H. & Chiu, W. Curr. Opin. Virol. 1, 110–117 (2011).

    Article  CAS  Google Scholar 

  2. Liao, M., Cao, E., Julius, D. & Cheng, Y. Nature 504, 107–112 (2013).

    Article  CAS  Google Scholar 

  3. Bai, X.C., Fernandez, I.S., McMullan, G. & Scheres, S.H. eLife 2, e00461 (2013).

    Article  Google Scholar 

  4. Lu, P. et al. Nature 512, 166–170 (2014).

    Article  CAS  Google Scholar 

  5. Rossmann, M.G., Bernal, R. & Pletnev, S.V. J. Struct. Biol. 136, 190–200 (2001).

    Article  CAS  Google Scholar 

  6. DiMaio, F. et al. Nat. Methods doi:10.1038/nmeth.3286 (23 February 2015).

  7. Allegretti, M., Mills, D.J., McMullan, G., Kühlbrandt, W. & Vonck, J. eLife 3, e01963 (2014).

    Article  Google Scholar 

  8. Amunts, A. et al. Science 343, 1485–1489 (2014).

    Article  CAS  Google Scholar 

  9. Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 62, 1002–1011 (2006).

    Article  Google Scholar 

  10. Terwilliger, T.C. et al. Acta Crystallogr. D Biol. Crystallogr. 64, 61–69 (2008).

    Article  CAS  Google Scholar 

  11. Baker, M.R., Rees, I., Ludtke, S.J., Chiu, W. & Baker, M.L. Structure 20, 450–463 (2012).

    Article  CAS  Google Scholar 

  12. Lindert, S. et al. Structure 17, 990–1003 (2009).

    Article  CAS  Google Scholar 

  13. Gront, D., Kulp, D.W., Vernon, R.M., Strauss, C.E. & Baker, D. PLoS ONE 6, e23294 (2011).

    Article  CAS  Google Scholar 

  14. Song, Y. et al. Structure 21, 1735–1742 (2013).

    Article  CAS  Google Scholar 

  15. Kudryashev, M. et al. Cell 10.1016/j.cell.2015.01.037 (in the press).

  16. Bradley, P., Misura, K.M. & Baker, D. Science 309, 1868–1871 (2005).

    Article  CAS  Google Scholar 

  17. Raman, S. et al. Science 327, 1014–1018 (2010).

    Article  CAS  Google Scholar 

  18. DiMaio, F.P., Soni, A.B., Phillips, G.N. Jr. & Shavlik, J.W. Int. J. Data Min. Bioinform. 3, 205–227 (2009).

    Article  Google Scholar 

  19. DiMaio, F., Tyka, M.D., Baker, M.L., Chiu, W. & Baker, D. J. Mol. Biol. 392, 181–190 (2009).

    Article  CAS  Google Scholar 

  20. Adams, P.D. et al. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  21. Winn, M.D. et al. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  Google Scholar 

  22. Chen, X., Wang, Q., Ni, F. & Ma, J. Proc. Natl. Acad. Sci. USA 107, 11352–11357 (2010).

    Article  CAS  Google Scholar 

  23. Mindell, J.A. & Grigorieff, N. J. Struct. Biol. 142, 334–347 (2003).

    Article  Google Scholar 

  24. Roseman, A.M. J. Struct. Biol. 145, 91–99 (2004).

    Article  CAS  Google Scholar 

  25. Frank, J. et al. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  Google Scholar 

  26. Li, X., Grigorieff, N. & Cheng, Y. J. Struct. Biol. 172, 407–412 (2010).

    Article  CAS  Google Scholar 

  27. Li, X. et al. Nat. Methods 10, 584–590 (2013).

    Article  CAS  Google Scholar 

  28. Scheres, S.H. & Chen, S. Nat. Methods 9, 853–854 (2012).

    Article  CAS  Google Scholar 

  29. Rosenthal, P.B. & Henderson, R. J. Mol. Biol. 333, 721–745 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank K. Laidig and D. Alonso for setting up and managing the computational resources. This work was supported by the US National Institutes of Health under award numbers R01GM092802 (R.Y.-R.W. and D.B.), EB001567 (E.H.E.) and R01GM098672 (Y.C.); the Swiss systems biology initiative SystemsX.ch grant CINA (M.K.); the University of California, San Francisco, Program for Breakthrough Biomedical Research (Y.C.); and Howard Hughes Medical Institute (D.B.). We thank Y. Liu for the use of his clustering algorithm.

Author information

Authors and Affiliations

Authors

Contributions

R.Y.-R.W. performed the research and drafted the manuscript. F.D. and D.B. supervised the research and edited the draft. M.K., E.H.E. and M.B. provided the helical reconstruction map of the VipA/VipB complex and compared the automated model with their manually traced model initially. X.L. and Y.C. provided the 20S map at 4.8-Å resolution. All authors edited the final manuscript.

Corresponding author

Correspondence to Frank DiMaio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 RosettaCM fixes placement errors in the final partial model of FrhA.

(a) One case where there is an error in fragment placement. (b) Density-guided rebuilding in RosettaCM is able to correct this error as the missing residues are rebuilt. The backbone trace in grey indicates the native structure (4ci0).

Supplementary Figure 2 Problems in building β-sheets.

Each row indicates a case where our automatic approach failed to determine the structure: VP6 at 3.8 Å (top) and STIV at 3.9 Å (bottom). Illustrated are the density map (left), the partial model at the iteration with highest accuracy (middle), and the native structure (right).

Supplementary Figure 3 Real-space density correlation over ambiguous region in the map.

A structural alignment of the residues with a discrepancy in sequence registration is indicated on the x-axis (the residues in between the orange and blue arrows in Figure 3a and 3b). The sequence assignment of the automated and manual models is labeled on the upper and lower axes, respectively. The blue line (automated model) and the red line (manual model) show the real-space density correlation for each assignment (y-axis). Real-space density correlation was calculated using density_tools in Rosetta with a 2.5Å mask.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Tables 1–3 (PDF 1340 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, RR., Kudryashev, M., Li, X. et al. De novo protein structure determination from near-atomic-resolution cryo-EM maps. Nat Methods 12, 335–338 (2015). https://doi.org/10.1038/nmeth.3287

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3287

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics