Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Reporters for sensitive and quantitative measurement of auxin response

A Corrigendum to this article was published on 29 October 2015

This article has been updated

Abstract

The visualization of hormonal signaling input and output is key to understanding how multicellular development is regulated. The plant signaling molecule auxin triggers many growth and developmental responses, but current tools lack the sensitivity or precision to visualize these. We developed a set of fluorescent reporters that allow sensitive and semiquantitative readout of auxin responses at cellular resolution in Arabidopsis thaliana. These generic tools are suitable for any transformable plant species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DR5v2 sensitively reports auxin response.
Figure 2: R2D2, a semiquantitative and rapid auxin-input reporter.

Similar content being viewed by others

Change history

  • 24 September 2014

    In the version of this article initially published, it was stated that all transgenic lines were created in the Arabidopsis Col-0 ecotype. However, they were actually generated in the Columbia-Utrecht (Col-utr) ecotype. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Lokerse, A.S. & Weijers, D. Curr. Opin. Plant Biol. 12, 520–526 (2009).

    Article  CAS  Google Scholar 

  2. Muday, G.K. J. Plant Growth Regul. 20, 226–243 (2001).

    Article  CAS  Google Scholar 

  3. Dharmasiri, N., Dharmasiri, S. & Estelle, M. Nature 435, 441–445 (2005).

    Article  CAS  Google Scholar 

  4. Kepinski, S. & Leyser, O. Nature 435, 446–451 (2005).

    Article  CAS  Google Scholar 

  5. Gray, W.M., Kepinski, S., Rouse, D., Leyser, O. & Estelle, M. Nature 414, 271–276 (2001).

    Article  CAS  Google Scholar 

  6. Tan, X. et al. Nature 446, 640–645 (2007).

    Article  CAS  Google Scholar 

  7. Ulmasov, T., Hagen, G. & Guilfoyle, T.J. Science 276, 1865–1868 (1997).

    Article  CAS  Google Scholar 

  8. Ulmasov, T., Hagen, G. & Guilfoyle, T.J. Proc. Natl. Acad. Sci. USA 96, 5844–5849 (1999).

    Article  CAS  Google Scholar 

  9. Wang, R. & Estelle, M. Curr. Opin. Plant Biol. 21, 51–58 (2014).

    Article  Google Scholar 

  10. Ulmasov, T., Murfett, J., Hagen, G. & Guilfoyle, T.J. Plant Cell 9, 1963–1971 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Friml, J. et al. Nature 426, 147–153 (2003).

    Article  CAS  Google Scholar 

  12. Moreno-Risueno, M.A. et al. Science 329, 1306–1311 (2010).

    Article  CAS  Google Scholar 

  13. Jones, A.R. et al. Nat. Cell Biol. 11, 78–84 (2009).

    Article  CAS  Google Scholar 

  14. Scarpella, E., Marcos, D., Friml, J. & Berleth, T. Genes Dev. 20, 1015–1027 (2006).

    Article  CAS  Google Scholar 

  15. Grieneisen, V.A., Xu, J., Marée, A.F.M., Hogeweg, P. & Scheres, B. Nature 449, 1008–1013 (2007).

    Article  CAS  Google Scholar 

  16. Boer, D.R. et al. Cell 156, 577–589 (2014).

    Article  CAS  Google Scholar 

  17. Hardtke, C.S. et al. Development 131, 1089–1100 (2004).

    Article  CAS  Google Scholar 

  18. Perrot-Rechenmann, C. Cold Spring Harb. Perspect. Biol. 2, a001446 (2010).

    Article  Google Scholar 

  19. Brunoud, G. et al. Nature 482, 103–106 (2012).

    Article  CAS  Google Scholar 

  20. Völker, A., Stierhof, Y.D. & Jürgens, G. J. Cell Sci. 114, 3001–3012 (2001).

    PubMed  Google Scholar 

  21. Weijers, D. et al. Development 128, 4289–4299 (2001).

    CAS  PubMed  Google Scholar 

  22. Federici, F., Dupuy, L., Laplaze, L., Heisler, M. & Haseloff, J. Nat. Methods 9, 483–485 (2012).

    Article  CAS  Google Scholar 

  23. Wend, S. et al. Sci. Rep. 3, 2052 (2013).

    Article  Google Scholar 

  24. Robert, H.S. et al. Curr. Biol. 23, 2506–2512 (2013).

    Article  CAS  Google Scholar 

  25. Vernoux, T. et al. Mol. Syst. Biol. 7, 508 (2011).

    Article  Google Scholar 

  26. De Rybel, B.D. et al. Plant Physiol. 156, 1292–1299 (2011).

    Article  CAS  Google Scholar 

  27. Willemsen, V. et al. Plant Cell 15, 612–625 (Humana Press, 2003).

    Article  CAS  Google Scholar 

  28. Llavata-Peris, C., Lokerse, A., Möller, B., De Rybel, B. & Weijers, D. in Plant Organogenesis: Methods and Protocols (ed. De Smet, Ive) Ch. 8, 137–148 (Humana Press, 2013).

  29. van den Berg, C., Willemsen, V., Hage, W., Weisbeek, P. & Scheres, B. Nature 378, 62–65 (1995).

    Article  CAS  Google Scholar 

  30. Daghma, D.S., Kumlehn, J., Hensel, G., Rutten, T. & Melzer, M. J. Exp. Bot. 63, 6017–6021 (2012).

    Article  CAS  Google Scholar 

  31. Hellemans, J., Mortier, G., De Paepe, A., Speleman, F. & Vandesompele, J. Genome Biol. 8, R19 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Laux (Universität Freiburg) for plasmids and B. de Rybel for helpful comments on the manuscript. This work was supported by grants from the European Research Council (ERC; CELLPATTERN; contract number 281573) and the Netherlands Organization for Scientific Research (NWO; ALW-820.02.019) to D.W. and Human Frontier Science Program (HFSP; research grant RGP0054-2013) and Agence Nationale de la Recherche (ANR; AuxiFlo; grant ANR-12-BSV6-0005) to T.V.

Author information

Authors and Affiliations

Authors

Contributions

C.-Y.L. generated all transgenic lines with the exception of RPS5A-DII-Venus lines, which were generated by G.B. All imaging was performed by C.-Y.L. and W.S. S.Y. contributed to analysis of DII-Venus lines. D.W. and T.V. supervised the project. C.-Y.L. and D.W. conceived of the study and wrote the paper with input from all authors.

Corresponding author

Correspondence to Dolf Weijers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Overview comparison of DR5 and DR5v2 activity in root tip.

Maximal projection of propidium iodine stained root of (a) DR5:: n3eGFP and (b) DR5v2:: n3eGFP reporter lines. Scale bars are 10 µm.

Source data

Supplementary Figure 2 Performance of primers against tandem repeated reporter genes.

qRT-PCR of serial diluted serial diluted pGIIM/DR5v2::ntdTomato-DR5::n3eGFP plasmid with primers used in this study. Bars indicate standard error from the mean (n=3).

Supplementary Figure 3 Response of DR5 and DR5v2 to external auxin.

Fluorescent signal intensity of n3xGFP (top row) and ntdTomato (bottom row) in DR5v2::ntdTomato-DR5::n3eGFP root tips following a 12-hour co-treatment of 10 µM NPA and the indicated concentrations of IAA. Detector gain was saturated for each channel separately at the highest signal intensity of the 1000 nM IAA treated root, and all other images were acquired using these same settings. Signal intensity is displayed as a false color scale. Scale bars are 10 µm.

Source data

Supplementary Figure 4 pRPS5a::DII:Venus and pRPS5a::mDII:Venus root tips.

(a) pRPS5a:: DII: Venus and (b) pRPS5a:: mDII: Venus. Scale bars are 10 µm.

Source data

Supplementary Figure 5 DR5v2-n3GFP and R2D2 heart-stage embryos.

Scale bars are 10 µm.

Supplementary Figure 6 Quantification of R2D2 gradients.

Normalized ntdTomato/n3xVenus signal ratio in nuclei at increasing distance from the QC (see dashed lines in image on the right). Cell 1 corresponds to the first daughter of the initial for each cell file. Red/yellow ratio was set to “1” in cell 1 for each cell file. Bars indicate standard error from the mean (n>30 cell files per tissue). Scale bars are 10 µm.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1 and Supplementary Note 1 (PDF 1731 kb)

R2D2 activity upon auxin treatment

Overlay of red and green fluorescence in a root after treatment with 1 μM IAA during 33 minutes (1 frame every 3 minutes). (AVI 8450 kb)

R2D2 activity upon control treatment

Overlay of red and green fluorescence in a root after treatment with control medium during 33 minutes (1 frame every 3 minutes). (AVI 8450 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, CY., Smet, W., Brunoud, G. et al. Reporters for sensitive and quantitative measurement of auxin response. Nat Methods 12, 207–210 (2015). https://doi.org/10.1038/nmeth.3279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3279

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing