Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Grease matrix as a versatile carrier of proteins for serial crystallography

Abstract

Serial femtosecond X-ray crystallography (SFX) has revolutionized atomic-resolution structural investigation by expanding applicability to micrometer-sized protein crystals, even at room temperature, and by enabling dynamics studies. However, reliable crystal-carrying media for SFX are lacking. Here we introduce a grease-matrix carrier for protein microcrystals and obtain the structures of lysozyme, glucose isomerase, thaumatin and fatty acid–binding protein type 3 under ambient conditions at a resolution of or finer than 2 Å.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Grease-matrix carrier of protein microcrystals and its extrusion.
Figure 2: Electron density map of lysozyme obtained using microcrystals embedded in grease.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Schlichting, I. & Miao, J. Curr. Opin. Struct. Biol. 22, 613–626 (2012).

    Article  CAS  Google Scholar 

  2. Chapman, H.N. et al. Nature 470, 73–77 (2011).

    Article  CAS  Google Scholar 

  3. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Nature 406, 752–757 (2000).

    Article  CAS  Google Scholar 

  4. Barty, A. et al. Nat. Photonics 6, 35–40 (2012).

    Article  CAS  Google Scholar 

  5. Emma, P. et al. Nat. Photonics 4, 641–647 (2010).

    Article  CAS  Google Scholar 

  6. Ishikawa, T. et al. Nat. Photonics 6, 540–544 (2012).

    Article  CAS  Google Scholar 

  7. Boutet, S. et al. Science 337, 362–364 (2012).

    Article  CAS  Google Scholar 

  8. Barends, T.R.M. Nature 505, 244–247 (2014).

    Article  CAS  Google Scholar 

  9. Johansson, L.C. et al. Nat. Methods 9, 263–265 (2012).

    Article  CAS  Google Scholar 

  10. Redecke, L. et al. Science 339, 227–230 (2013).

    Article  CAS  Google Scholar 

  11. Koopmann, R. et al. Nat. Methods 9, 259–262 (2012).

    Article  CAS  Google Scholar 

  12. Kern, J. et al. Science 340, 491–495 (2013).

    Article  CAS  Google Scholar 

  13. Weierstall, U., Spence, J.C.H. & Doak, R.B. Rev. Sci. Instrum. 83, 035108 (2012).

    Article  CAS  Google Scholar 

  14. Park, J., Joti, Y., Ishikawa, T. & Song, C. Appl. Phys. Lett. 103, 264101 (2013).

    Article  Google Scholar 

  15. Weierstall, U. et al. Nat. Commun. 5, 3309 (2014).

    Article  Google Scholar 

  16. Liu, W. et al. Science 342, 1521–1524 (2013).

    Article  CAS  Google Scholar 

  17. White, T. A. et al. J. Appl. Cryst. 45, 335–341 (2012).

    Article  CAS  Google Scholar 

  18. Falkner, J.C. et al. Chem. Mater. 17, 2679–2686 (2005).

    Article  CAS  Google Scholar 

  19. Masuda, T., Ohta, K., Mikami, B. & Kitabatake, N. Acta Crystallogr. F Struct. Biol. Commun. 67, 652–658 (2011).

    Article  CAS  Google Scholar 

  20. Hirose, M. et al. J. Synchrotron Radiat. 20, 923–928 (2013).

    Article  CAS  Google Scholar 

  21. Kameshima, T. et al. Rev. Sci. Instrum. 85, 033110 (2014).

    Article  Google Scholar 

  22. Tono, K. et al. New J. Phys. 15, 083035 (2013).

    Article  Google Scholar 

  23. Yumoto, H. et al. Nat. Photonics 7, 43–47 (2013).

    Article  CAS  Google Scholar 

  24. Duisenberg, A.J.M. J. Appl. Cryst. 25, 92–96 (1992).

    Article  CAS  Google Scholar 

  25. Leslie, A.G.W. Acta Crystallogr. D Biol. Crystallogr. 62, 48–57 (2006).

    Article  Google Scholar 

  26. Powell, H.R. Acta Crystallogr. D Biol. Crystallogr. 55, 1690–1695 (1999).

    Article  CAS  Google Scholar 

  27. Kabsch, W. J. Appl. Cryst. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  28. Kabsch, W. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  29. McCoy, A.J. et al. J. Appl. Cryst. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  30. Emsley, P. & Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  31. Collaborative Computational Project, Number 4. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  32. Adams, P.D. et al. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The XFEL experiments were carried out at the BL3 of SACLA with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (proposal nos. 2012B8036, 2013A8039, 2013A8040, 2013B8044, 2013B8045 and 2014A8032). This work was supported by RIKEN, by the X-ray Free-Electron Laser Priority Strategy Program (MEXT) and partly by Research Acceleration Program of Japan Science and Technology Agency. The sample preparation of FABP3 was supported by the JST-ERATO Murata Lipid Active Structure Project. The authors thank the SACLA beamline staff for technical assistance, K. Diederichs for help with data analysis and A. Nisbet for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M. Sugahara introduced grease-matrix extrusion scheme. M. Sugahara, E.M., E.N., M. Suzuki, T.T. and T.M. performed data collection, data processing, structure refinements (lysozyme: M. Sugahara and E.N.; glucose isomerase: E.N. and T.T.; thaumatin: T.M.; FABP3: E.M. and M. Suzuki). E.M., E.N., T.T., T.M., T.S., Y.T., C. Suno, K.I., D.P., K.K., S.S., M.M. and T.I. developed the microcrystal sample preparations and prepared samples (lysozyme: T.S., Y.T., C. Suno, K.I., D.P., E.N. and T.T.; glucose isomerase: E.N. and T.T.; thaumatin: T.M.; FABP3: E.M., K.K., S.S., M.M. and T.I.). E.N. and R.T. designed and developed the injection method. K.T. and M.Y. developed the DAPHNIS. K.T., C. Song, J.P., T.K., T.H., Y.J. and M.Y. developed the SFX systems including injectors. M. Sugahara, E.N. and C. Song wrote the manuscript with input from all the coauthors. S.I. coordinated the project.

Corresponding author

Correspondence to Michihiro Sugahara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Protein microcrystals used for SFX measurements.

(a) lysozyme, (b) glucose isomerase, (c) thaumatin and (d) FABP3 crystals. Scale bars represent 20 μm.

Supplementary Figure 2 Room-temperature structure of glucose isomerase.

(a) A typical diffraction pattern from an individual microcrystal. Resolution at the edges corresponds to ~1.6 Å. (b) A close-up view of glucose isomerase structure with (2FoFc) electron-density map (contoured at 1.0σ). This figure was drawn with the program PyMol (http://www.pymol.org).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 and Supplementary Tables 1 and 2

Grease matrix carrier of proteins and micro-extrusion.

The crystal solution was dispensed into mineral oil–based grease, and then mixed. The crystal-containing grease was inserted into a dispenser tip. After the tip was centrifuged, the sample was loaded into a syringe. The grease produced a stable flow during the SFX experiment. (AVI 10763 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugahara, M., Mizohata, E., Nango, E. et al. Grease matrix as a versatile carrier of proteins for serial crystallography. Nat Methods 12, 61–63 (2015). https://doi.org/10.1038/nmeth.3172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3172

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing