Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FlyMAD: rapid thermogenetic control of neuronal activity in freely walking Drosophila

Abstract

Rapidly and selectively modulating the activity of defined neurons in unrestrained animals is a powerful approach in investigating the circuit mechanisms that shape behavior. In Drosophila melanogaster, temperature-sensitive silencers and activators are widely used to control the activities of genetically defined neuronal cell types. A limitation of these thermogenetic approaches, however, has been their poor temporal resolution. Here we introduce FlyMAD (the fly mind-altering device), which allows thermogenetic silencing or activation within seconds or even fractions of a second. Using computer vision, FlyMAD targets an infrared laser to freely walking flies. As a proof of principle, we demonstrated the rapid silencing and activation of neurons involved in locomotion, vision and courtship. The spatial resolution of the focused beam enabled preferential targeting of neurons in the brain or ventral nerve cord. Moreover, the high temporal resolution of FlyMAD allowed us to discover distinct timing relationships for two neuronal cell types previously linked to courtship song.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FlyMAD system overview.
Figure 2: Behavioral responses to acute neuronal silencing and activation.
Figure 3: Body part–specific targeting using TTM tracking.
Figure 4: Acute activation of courtship neurons.

Similar content being viewed by others

References

  1. Pfeiffer, B.D. et al. Tools for neuroanatomy and neurogenetics in Drosophila. Proc. Natl. Acad. Sci. USA 105, 9715–9720 (2008).

    Article  CAS  Google Scholar 

  2. Jenett, A. et al. A GAL4-driver line resource for Drosophila neurobiology. Cell Rep. 2, 991–1001 (2012).

    Article  CAS  Google Scholar 

  3. Lima, S.Q. & Miesenböck, G. Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121, 141–152 (2005).

    Article  CAS  Google Scholar 

  4. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  5. Heisenberg, M. & Buchner, E. The role of retinula cell types in visual behavior of Drosophila melanogaster. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 117, 127–162 (1977).

    Article  Google Scholar 

  6. Aravanis, A.M. et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4, S143–S156 (2007).

    Article  Google Scholar 

  7. Lin, J.Y., Knutsen, P.M., Muller, A., Kleinfeld, D. & Tsien, R.Y. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 16, 1499–1508 (2013).

    Article  CAS  Google Scholar 

  8. Inagaki, H.K. et al. Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat. Methods 11, 325–332 (2014).

    Article  CAS  Google Scholar 

  9. Klapoetke, N.C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    Article  CAS  Google Scholar 

  10. Bernstein, J.G., Garrity, P.A. & Boyden, E.S. Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits. Curr. Opin. Neurobiol. 22, 61–71 (2012).

    Article  CAS  Google Scholar 

  11. Keene, A.C. & Masek, P. Optogenetic induction of aversive taste memory. Neuroscience 222, 173–180 (2012).

    Article  CAS  Google Scholar 

  12. Marella, S., Mann, K. & Scott, K. Dopaminergic modulation of sucrose acceptance behavior in Drosophila. Neuron 73, 941–950 (2012).

    Article  CAS  Google Scholar 

  13. Simon, J.C. & Dickinson, M.H. A new chamber for studying the behavior of Drosophila. PLoS ONE 5, e8793 (2010).

    Article  Google Scholar 

  14. Straw, A.D. & Dickinson, M.H. Motmot, an open-source toolkit for realtime video acquisition and analysis. Source Code Biol. Med. 4, 5 (2009).

    Article  Google Scholar 

  15. Pulver, S.R., Pashkovski, S.L., Hornstein, N.J., Garrity, P.A. & Griffith, L.C. Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. J. Neurophysiol. 101, 3075–3088 (2009).

    Article  Google Scholar 

  16. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  Google Scholar 

  17. Kitamoto, T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81–92 (2001).

    Article  CAS  Google Scholar 

  18. Grigliatti, T.A., Hall, L., Rosenbluth, R. & Suzuki, D.T. Temperature-sensitive mutations in Drosophila melanogaster. Mol. Gen. Genet. 120, 107–114 (1973).

    Article  CAS  Google Scholar 

  19. Poodry, C.A. & Edgar, L. Reversible alterations in the neuromuscular junctions of Drosophila melanogaster bearing a temperature-sensitive mutation, shibire. J. Cell Biol. 81, 520–527 (1979).

    Article  CAS  Google Scholar 

  20. Viswanath, V. et al. Opposite thermosensor in fruitfly and mouse. Nature 423, 822–823 (2003).

    Article  CAS  Google Scholar 

  21. Hamada, F.N. et al. An internal thermal sensor controlling temperature preference in Drosophila. Nature 454, 217–220 (2008).

    Article  CAS  Google Scholar 

  22. Mahr, A. & Aberle, H. The expression pattern of the Drosophila vesicular glutamate transporter: a marker protein for motoneurons and glutamatergic centers in the brain. Gene Expr. Patterns 6, 299–309 (2006).

    Article  CAS  Google Scholar 

  23. Yamaguchi, S., Wolf, R., Desplan, C. & Heisenberg, M. Motion vision is independent of color in Drosophila. Proc. Natl. Acad. Sci. USA 105, 4910–4915 (2008).

    Article  CAS  Google Scholar 

  24. Ellis, M.C., O'Neill, E.M. & Rubin, G.M. Expression of Drosophila glass protein and evidence for negative regulation of its activity in non-neuronal cells by another DNA-binding protein. Development 119, 855–865 (1993).

    CAS  PubMed  Google Scholar 

  25. Bidaye, S.S., Machacek, C., Wu, Y. & Dickson, B.J. Neuronal control of Drosophila walking direction. Science 344, 97–101 (2014).

    Article  CAS  Google Scholar 

  26. Ni, L. et al. A gustatory receptor paralogue controls rapid warmth avoidance in Drosophila. Nature 500, 580–584 (2013).

    Article  CAS  Google Scholar 

  27. Tang, X., Platt, M.D., Lagnese, C.M., Leslie, J.R. & Hamada, F.N. Temperature integration at the AC thermosensory neurons in Drosophila. J. Neurosci. 33, 894–901 (2013).

    Article  CAS  Google Scholar 

  28. Gallio, M., Ofstad, T.A., Macpherson, L.J., Wang, J.W. & Zuker, C.S. The coding of temperature in the Drosophila brain. Cell 144, 614–624 (2011).

    Article  CAS  Google Scholar 

  29. Clyne, J.D. & Miesenböck, G. Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell 133, 354–363 (2008).

    Article  CAS  Google Scholar 

  30. von Philipsborn, A.C. et al. Neuronal control of Drosophila courtship song. Neuron 69, 509–522 (2011).

    Article  CAS  Google Scholar 

  31. Kohatsu, S., Koganezawa, M. & Yamamoto, D. Female contact activates male-specific interneurons that trigger stereotypic courtship behavior in Drosophila. Neuron 69, 498–508 (2011).

    Article  CAS  Google Scholar 

  32. Yu, J.Y., Kanai, M.I., Demir, E., Jefferis, G.S.X.E. & Dickson, B.J. Cellular organization of the neural circuit that drives Drosophila courtship behavior. Curr. Biol. 20, 1602–1614 (2010).

    Article  CAS  Google Scholar 

  33. Dankert, H., Wang, L., Hoopfer, E.D., Anderson, D.J. & Perona, P. Automated monitoring and analysis of social behavior in Drosophila. Nat. Methods 6, 297–303 (2009).

    Article  CAS  Google Scholar 

  34. Branson, K., Robie, A., Bender, J., Perona, P. & Dickinson, M.H. High-throughput ethomics in large groups of Drosophila. Nat. Methods 6, 451–457 (2009).

    Article  CAS  Google Scholar 

  35. Friggi-Grelin, F. et al. Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. J. Neurobiol. 54, 618–627 (2003).

    Article  CAS  Google Scholar 

  36. Straw, A.D., Branson, K., Neumann, T.R. & Dickinson, M.H. Multi-camera real-time three-dimensional tracking of multiple flying animals. J. R. Soc. Interface 8, 395–409 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Bidaye for data on the VT50660-GAL4 genotype, the Institute of Molecular Pathology (IMP) workshop for help fabricating the hardware, M. Palfreyman and M. Dickinson for insightful discussion, L. Fenk for technological support and P. Masek for insight into IR activation of TrpA1. We thank J.H. Simpson (Howard Hughes Medical Institute, Janelia Farm Research Campus) for providing UAS-Shibirets1 flies. The fruit fly drawings in Figure 3 are modified from versions made available by Database Center for Life Science (DBCLS) under a CC 2.1 license. This work was supported by the Natural Sciences and Engineering Research Council of Canada by a postgraduate scholarship to D.E.B., European Research Council (ERC) Starting grant 281884 and Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF) grant CS2011-029 to A.D.S., ERC Advanced grant 233306 to B.J.D. and IMP core funding.

Author information

Authors and Affiliations

Authors

Contributions

D.E.B., B.J.D. and A.D.S. conceived of the project. D.E.B., J.R.S., D.H., A.P. and A.D.S. developed the hardware and software. D.E.B. and D.H. performed experiments. All authors contributed to data analysis, interpretation and writing the manuscript.

Corresponding authors

Correspondence to Barry J Dickson or Andrew D Straw.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16 and Supplementary Tables 1–5 (PDF 5575 kb)

FlyMAD: Rapid thermogenetic control of neuronal activity in freely-walking Drosophila

Summary of FlyMAD objectives, operation and results including thermogenetic silencing and activation. (MP4 10439 kb)

Silencing motoneurons with ShibireTS

Thermogenetic silencing of motoneurons reversibly disrupts locomotion. Genotype was +; OK371-Gal4/uas-ShibireTS1. (MP4 522 kb)

Silencing photoreceptors blocks the optomotor response

Thermogenetic silencing of visual neurons disrupts optomotor response. Genotype was Rh1-Gal4; UAS-ShibireTS. (MP4 4489 kb)

Activating Moonwalker neurons with TrpA1

Thermogenetic activation of moonwalker neurons induces backwards walking. Genotype was VT50660-Gal4; UAS-TrpA1. (MP4 864 kb)

Estimating the error of Through-The-Mirror (TTM) Tracking

In TTM tracking, the mirror movement command signal is proportional to the tracking error. The lower panel of this video shows the error in X and Y directions over time, while the upper panels show the wide and TTM camera views. (MP4 2641 kb)

Head-targeted heating induces proboscis extension from dopaminergic activation

Thermogenetic activation of flies with genotype TH-Gal4; UAS-TrpA1 causes proboscis extension. (MP4 19498 kb)

Activating song neurons in the VNC is stronger when targeting thorax than head

Thermogenetic activation of flies expressing TrpA1 in thoracic song neurons induces lower latency and more frequent singing when targeting the thorax than the head. (MP4 18944 kb)

P1-dependent courtship persists after stimulus ceases

A fly expressing TrpA1 in P1 performs courtship towards plasticine balls during and long after the thermogenetic stimulus is applied. Genotype is NP2361-Gal4; UAS>stop>TrpA1myc; fruFLP. (MP4 3585 kb)

pIP10-dependent courtship is closely linked to artificial activation

A fly expressing TrpA1 in pIP10 extends wings only when the thermogenetic stimulus is applied. Genotype is VT40347-Gal4; UAS>stop>TrpA1myc; fruFLP. (MP4 687 kb)

Supplementary Software

FlyMAD 0.9 installer. The file contains an installer for FlyMAD which depends on a computer system running a 64bit version of Ubuntu 12.04. The design files for the chamber, the optomotor drum, and the circuit board are included. (ZIP 2961 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bath, D., Stowers, J., Hörmann, D. et al. FlyMAD: rapid thermogenetic control of neuronal activity in freely walking Drosophila. Nat Methods 11, 756–762 (2014). https://doi.org/10.1038/nmeth.2973

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2973

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing