Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Rapid adaptive optical recovery of optimal resolution over large volumes

Abstract

Using a descanned, laser-induced guide star and direct wavefront sensing, we demonstrate adaptive correction of complex optical aberrations at high numerical aperture (NA) and a 14-ms update rate. This correction permits us to compensate for the rapid spatial variation in aberration often encountered in biological specimens and to recover diffraction-limited imaging over large volumes (>240 mm per side). We applied this to image fine neuronal processes and subcellular dynamics within the zebrafish brain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AO over a large volume in the living zebrafish brain.
Figure 2: Spatial variability of aberrations across the living zebrafish brain.
Figure 3: Two-color confocal imaging with AO provided by a descanned two-photon guide star deep in the living zebrafish brain.

Similar content being viewed by others

References

  1. Hardy, J.W. Adaptive Optics for Astronomical Telescopes (Oxford Univ. Press, 1998).

  2. Booth, M.J. Phil. Trans. R. Soc. A 365, 2829–2843 (2007).

    Article  Google Scholar 

  3. Kubby, J.A. Adaptive Optics for Biological Imaging (CRC Press, 2013).

  4. Schwertner, M., Booth, M.J. & Wilson, T. Opt. Express. 12, 6540–6552 (2004).

    Article  CAS  Google Scholar 

  5. Aviles-Espinosa, R. et al. Biomed. Opt. Express 2, 3135–3149 (2011).

    Article  Google Scholar 

  6. Hofer, H., Artal, P., Singer, B., Aragón, J.L. & Williams, D.R. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 497–506 (2001).

    Article  CAS  Google Scholar 

  7. Tao, X. et al. Opt. Lett. 36, 1062–1064 (2011).

    Article  Google Scholar 

  8. Tao, X. et al. Opt. Lett. 36, 3389–3391 (2011).

    Article  CAS  Google Scholar 

  9. Débarre, D. et al. Opt. Lett. 34, 2495–2497 (2009).

    Article  Google Scholar 

  10. Ji, N., Milkie, D.E. & Betzig, E. Nat. Methods 7, 141–147 (2010).

    Article  CAS  Google Scholar 

  11. Cui, M. Opt. Lett. 36, 870–872 (2011).

    Article  Google Scholar 

  12. Milkie, D.E., Betzig, E. & Ji, N. Opt. Lett. 36, 4206–4208 (2011).

    Article  Google Scholar 

  13. Keller, P.J., Schmidt, A.D., Wittbrodt, J. & Stelzer, E.H.K. Science 322, 1065–1069 (2008).

    Article  CAS  Google Scholar 

  14. Kaufmann, A., Mickoleit, M., Weber, M. & Husiken, J. Development 139, 3242–3247 (2012).

    Article  CAS  Google Scholar 

  15. Tomer, R., Khairy, K. & Keller, P.J. Curr. Opin. Genet. Dev. 21, 558–565 (2011).

    Article  CAS  Google Scholar 

  16. Weber, M. & Huisken, J. Curr. Opin. Genet. Dev. 21, 566–572 (2011).

    Article  CAS  Google Scholar 

  17. Planchon, T.A. et al. Nat. Methods 8, 417–423 (2011).

    Article  CAS  Google Scholar 

  18. Gao, L. et al. Cell 151, 1370–1385 (2012).

    Article  CAS  Google Scholar 

  19. Ahrens, M.B. et al. Nature 485, 471–477 (2012).

    Article  CAS  Google Scholar 

  20. Ahrens, M.B. et al. Nat. Methods 10, 413–420 (2013).

    Article  CAS  Google Scholar 

  21. Gerchberg, R.W. & Saxton, W.O. Optik (Stuttg.) 35, 237–246 (1972).

    Google Scholar 

  22. Campbell, H.I., Zhang, S., Greenaway, A.H. & Restaino, S. Opt. Lett. 29, 2707–2709 (2004).

    Article  Google Scholar 

  23. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. & Schilling, T.F. Dev. Dyn. 203, 253–310 (1995).

    Article  CAS  Google Scholar 

  24. Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio) 4th edn. (University of Oregon Press, 2000).

  25. Xie, X. et al. BMC Biol. 10, 93 (2012).

    Article  CAS  Google Scholar 

  26. Cooper, M.S. et al. Dev. Dyn. 232, 359–368 (2005).

    Article  CAS  Google Scholar 

  27. Wada, N. et al. Development 132, 3977–3988 (2005).

    Article  CAS  Google Scholar 

  28. Carney, T.J. et al. Development 133, 4619–4630 (2006).

    Article  CAS  Google Scholar 

  29. Blader, P., Plessy, C. & Strahle, U. Mech. Dev. 120, 211–218 (2003).

    Article  CAS  Google Scholar 

  30. Szobota, S. et al. Neuron 54, 535–545 (2007).

    Article  CAS  Google Scholar 

  31. Plucińska, G. et al. J. Neurosci. 32, 16203–16212 (2012).

    Article  Google Scholar 

  32. Godinho, L. in Imaging in Developmental Biology (eds. Sharpe, J. & Wong, R.O.) Ch. 4, 49–69 (Cold Spring Harbor Laboratory Press, 2011).

Download references

Acknowledgements

We thank our colleagues N. Ji for many fruitful technical discussions and suggestion of the zebrafish system; P. Keller for the HRAS transgenic line; C. Yang, S. Narayan, M.B. Ahrens, M. Koyama, B. Lemon, K. McDole and P. Keller for further guidance on zebrafish biology; J. Cox, M. Rose, A. Luck and J. Barber for zebrafish maintenance and breeding; and R. Kloss, B. Biddle and B. Bowers for machining services. We are grateful to R. Köster (Technical University of Braunschweig) for providing the KalTA4 transactivator and X. Xie (Georgia Regents University) for assistance in generating corresponding transgenic Enhancer Trap lines. We also thank R. Kelsh (University of Bath) for the Sox10:eGFP line and U. Strahle (Karlsruhe Institute of Technology) for the Ngn:nRFP line. J.S.M. is supported by US National Institutes of Health (NIH) grants R21 MH083614 (NIMH) and R43 HD047089 (NICHD). M.E.B. is supported by NIH grant DE16459. T.M. acknowledges the financial support of the Center for Integrated Protein Sciences (EXC114 CIPSM) and of the Munich Cluster for Systems Neurology (EXC1010 SyNergy). P.E. was supported by DFG Research Training Group 1373. A.S. and P.E. acknowledge support from the Howard Hughes Medical Institute Janelia Farm visiting scientist program.

Author information

Authors and Affiliations

Authors

Contributions

E.B. supervised the project; K.W. and E.B. conceived the idea; D.E.M., K.W. and E.B. developed the instrument control program; K.W. built the instrument and performed the experiments; A.S., P.E., T.M., M.E.B. and J.M. supplied zebrafish lines and guidance on live zebrafish imaging; K.W. and E.B. analyzed the data; E.B. wrote the paper with input from all co-authors.

Corresponding author

Correspondence to Eric Betzig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1 and 2 (PDF 3774 kb)

Adaptive optics (AO) over a large volume in the living zebrafish brain

Two photon 3D image of a membrane-labeled subset of neurons in the brain of a living zebrafish embryo, 72 hours post fertilization. This 240 x 240 x 270 μm3 imaging volume consists of 19,584 corrective subvolumes, each 30 x 30 x 1.05 μm3 in extent. Zooming deep in the mid-brain, the individual neuronal processes, unresolved without AO, become distinct after correction. (MOV 49041 kb)

Time–lapse imaging of oligodendrocyte migration in the developing zebrafish hindbrain

Two-photon time lapse imaging of the neurite-guided oligodendrocyte migration deep in the zebrafish hindbrain with adaptive optical correction. All frames are MIPs over a 170 x 90 x 60 μm volume taken at 4 minute intervals with AO and deconvolution in the two-photon mode, starting 72 hours post-fertilization. (MOV 3951 kb)

Spatial variability of aberrations across the living zebrafish brain

Comparative two-photon imaging of a living zebrafish brain, 72 hours post-fertilization, with a ubiquitously expressed cell membrane marker at a depth of 150 μm. Left panel: no AO; middle panel: with AO; right panel: local wavefront error. (MOV 27099 kb)

Two–color confocal imaging with AO deep in the living zebrafish brain

Two–color, 3D confocal images of oligodendrocytes and neuronal nuclei over a 40 x 40 x 200 μm3 volume extending from the optic tectum through the midbrain, in a zebrafish 72 hours post fertilization. AO correction was performed using a de-scanned two-photon guide star in each of 40 x 40 x 9 μm3 corrective sub-volumes before confocal imaging. (MOV 24581 kb)

Two–color subcellular confocal imaging with AO deep in the zebrafish brain

Two–color, 3D confocal images of mitochondria (magenta) and the plasma membrane (green) of a cell 150 μm deep in the hindbrain of a zebrafish, 4 days post fertilization. The imaging volume is 25 x 25 x 15 μm3. (MOV 10896 kb)

Time–lapse imaging of axonal trafficking of mitochondria 150 μm deep in the zebrafish brain

Time lapse imaging of axonal trafficking of mitochondria 150 μm deep in the zebrafish brain, 4 days post fertilization, over a 20 x 40 x 18 μm3 imaging volume at 2 minute intervals. (MOV 8122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Milkie, D., Saxena, A. et al. Rapid adaptive optical recovery of optimal resolution over large volumes. Nat Methods 11, 625–628 (2014). https://doi.org/10.1038/nmeth.2925

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2925

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing