Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers

A Corrigendum to this article was published on 30 June 2015

This article has been updated

Abstract

X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and without radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract meaningful high-resolution signals from fewer diffraction measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermolysin structure determination at 2.1 Å resolution.
Figure 2: Calibration and validation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Change history

  • 03 June 2015

    In the version of this article initially published, the authors claimed that with the tool cctbx.xfel, weak diffraction signals can be measured using fewer crystal specimens than are needed for the previously available program CrystFEL. However, there is not enough evidence to support this claim. The inaccurate statements have been corrected in the HTML and PDF versions of the article.

References

  1. Neutze, R. et al. Nature 406, 752–757 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Alonso-Mori, R. et al. Proc. Natl. Acad. Sci. USA 109, 19103–19107 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kern, J. et al. Science 340, 491–495 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chapman, H.N. et al. Nature 470, 73–77 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Koopmann, R. et al. Nat. Methods 9, 259–262 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Redecke, L. et al. Science 339, 227–230 (2013).

    CAS  PubMed  Google Scholar 

  7. Bourenkov, G.P. & Popov, A.N. Acta Crystallogr. D Biol. Crystallogr. 62, 58–64 (2006).

    PubMed  Google Scholar 

  8. Sauter, N.K. et al. Acta Crystallogr. D Biol. Crystallogr. 69, 1274–1282 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. White, T.A. et al. J. Appl. Cryst. 45, 335–341 (2012).

    CAS  Google Scholar 

  10. Boutet, S. et al. Science 337, 362–364 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sauter, N.K., Grosse-Kunstleve, R.W. & Adams, P.D. J. Appl. Cryst. 37, 399–409 (2004).

    CAS  Google Scholar 

  12. Sauter, N.K. & Poon, B.K. J. Appl. Cryst. 43, 611–616 (2010).

    CAS  Google Scholar 

  13. Powell, H.R., Johnson, O. & Leslie, A.G. Acta Crystallogr. D Biol. Crystallogr. 69, 1195–1203 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kirian, R.A. et al. Acta Crystallogr. A 67, 131–140 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Karplus, P.A. & Diederichs, K. Science 336, 1030–1033 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kirian, R.A. et al. Opt. Express 18, 5713–5723 (2010).

    PubMed  Google Scholar 

  17. Johansson, L.C. et al. Nat. Methods 9, 263–265 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Winkler, F.K., Schutt, C.E. & Harrison, S.C. Acta Crystallogr. A 35, 901–911 (1979).

    CAS  Google Scholar 

  19. Rossmann, M.G. et al. J. Appl. Cryst. 12, 570–581 (1979).

    CAS  Google Scholar 

  20. Zhu, D. et al. Appl. Phys. Lett. 101, 034103 (2012).

    Google Scholar 

  21. Inouye, K. J. Biochem. 112, 335–340 (1992).

    CAS  PubMed  Google Scholar 

  22. Titani, K. et al. Nature 238, 35–37 (1972).

    CAS  Google Scholar 

  23. Boutet, S. & Williams, G.J. New J. Phys. 12, 035024 (2010).

    Google Scholar 

  24. Sierra, R.G. et al. Acta Crystallogr. D Biol. Crystallogr. 68, 1584–1587 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bogan, M.J. Anal. Chem. 85, 3464–3471 (2013).

    CAS  PubMed  Google Scholar 

  26. Hart, P. et al. Proc. SPIE 8504, 85040C (2012).

    Google Scholar 

  27. Maia, F.R.N.C. Nat. Methods 9, 854–855 (2012).

    CAS  PubMed  Google Scholar 

  28. Zhang, Z. et al. J. Appl. Cryst. 39, 112–119 (2006).

    CAS  Google Scholar 

  29. Steller, I., Bolotovsky, R. & Rossmann, M.G. J. Appl. Cryst. 30, 1036–1040 (1997).

    CAS  Google Scholar 

  30. Rossmann, M.G. & van Beek, C.G. Acta Crystallogr. D Biol. Crystallogr. 55, 1631–1640 (1999).

    CAS  PubMed  Google Scholar 

  31. Sauter, N.K., Grosse-Kunstleve, R.W. & Adams, P.D. J. Appl. Cryst. 39, 158–168 (2006).

    CAS  Google Scholar 

  32. Kern, J. et al. Proc. Natl. Acad. Sci. USA 109, 9721–9726 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Giordano, R. et al. Acta Crystallogr. D Biol. Crystallogr. 68, 649–658 (2012).

    CAS  PubMed  Google Scholar 

  34. Diederichs, K. & Karplus, P.A. Acta Crystallogr. D Biol. Crystallogr. 69, 1215–1222 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Paithankar, K.S. et al. Acta Crystallogr. D Biol. Crystallogr. 67, 608–618 (2011).

    CAS  PubMed  Google Scholar 

  36. White, T.A. et al. Acta Crystallogr. D Biol. Crystallogr. 69, 1231–1240 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Nave, C. Acta Crystallogr. D Biol. Crystallogr. 54, 848–853 (1998).

    CAS  PubMed  Google Scholar 

  38. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    CAS  PubMed  Google Scholar 

  39. Emma, P. et al. Nat. Photonics 4, 641–647 (2010).

    CAS  Google Scholar 

  40. Greenhough, T.J. & Helliwell, J.R. J. Appl. Cryst. 15, 338–351 (1982).

    CAS  Google Scholar 

  41. Greenhough, T.J. & Helliwell, J.R. J. Appl. Cryst. 15, 493–508 (1982).

    CAS  Google Scholar 

  42. Greenhough, T.J., Helliwell, J.R. & Rule, S.A. J. Appl. Cryst. 16, 242–250 (1983).

    CAS  Google Scholar 

  43. Ren, Z. & Moffat, K. J. Appl. Cryst. 28, 461–481 (1995).

    CAS  Google Scholar 

  44. Dauter, Z. Acta Crystallogr. D Biol. Crystallogr. 55, 1703–1717 (1999).

    CAS  PubMed  Google Scholar 

  45. Diederichs, K. Acta Crystallogr. D Biol. Crystallogr. 65, 535–542 (2009).

    CAS  PubMed  Google Scholar 

  46. Schreurs, A.M.M., Xian, X. & Kroon-Batenburg, L.M.J. J. Appl. Cryst. 43, 70–82 (2009).

    Google Scholar 

  47. Porta, J. et al. Acta Crystallogr. D Biol. Crystallogr. 67, 628–638 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bolotovsky, R. & Coppens, P. J. Appl. Cryst. 30, 65–70 (1997).

    CAS  Google Scholar 

  49. Leslie, A.G.W. Acta Crystallogr. D Biol. Crystallogr. 62, 48–57 (2006).

    PubMed  Google Scholar 

  50. Kahn, R. et al. J. Appl. Cryst. 15, 330–337 (1982).

    CAS  Google Scholar 

  51. Brünger, A.T. Nature 355, 472–475 (1992).

    PubMed  Google Scholar 

  52. Strüder, L. et al. Nucl. Instrum. Methods Phys. Res. A 614, 483–496 (2010).

    Google Scholar 

  53. Huang, T.C. et al. J. Appl. Cryst. 26, 180–184 (1993).

    CAS  Google Scholar 

  54. McCoy, A.J. et al. J. Appl. Cryst. 40, 658–674 (2007).

    CAS  Google Scholar 

  55. Adams, P.D. et al. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. English, A.C. et al. Proteins 37, 628–640 (1999).

    CAS  PubMed  Google Scholar 

  57. Terwilliger, T.C. et al. Acta Crystallogr. D Biol. Crystallogr. 64, 61–69 (2008).

    CAS  PubMed  Google Scholar 

  58. Afonine, P.V. et al. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, V.B. et al. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    CAS  PubMed  Google Scholar 

  60. Urzhumtseva, L. et al. Acta Crystallogr. D Biol. Crystallogr. 65, 297–300 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Afonine, P.V. et al. J. Appl. Cryst. 43, 669–676 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (NIH) grants GM095887 and GM102520 and Director, Office of Science, US Department of Energy (DOE) under contract DE-AC02-05CH11231 for data-processing methods (N.K.S.); Director, DOE Office of Science, Office of Basic Energy Sciences (OBES), Chemical Sciences, Geosciences and Biosciences Division (CSGB) under contract DE-AC02-05CH11231 (J.Y. and V.K.Y.); NIH grant GM055302 (V.K.Y.); and NIH grant P41GM103393 (U.B.). Sample injection was supported by LCLS (M.J.B. and D.W.S.) and the Atomic, Molecular and Optical Science program, CSGB Division, OBES, DOE (M.J.B.), and through the SLAC National Accelerator Laboratory Directed Research and Development program (M.J.B. and H.L.). J.M. was supported by the Artificial Leaf Project Umeå (K&A Wallenberg Foundation), the Solar Fuels Strong Research Environment Umeå (Umeå University), Vetenskapsrådet and Swedish Energy Agency (Energimyndigheten). Experiments were carried out at the LCLS at SLAC, an Office of Science User Facility operated for the DOE by Stanford University. We thank A. Perazzo, M. Dubrovin, I. Ofte, and A. Salnikov for collaboration on data analysis, and C. Kenney for expertise related to the CSPAD detector.

Author information

Authors and Affiliations

Authors

Contributions

J. Hattne, J.K., J.Y., U.B., V.K.Y., P.D.A. and N.K.S. conceived of the new data-processing methods and analyzed the data; J. Hattne, N.E., R.J.G., A.S.B., R.W.G.-K., P.H.Z., M.M., P.D.A. and N.K.S. wrote the data-processing software; U.B., J.Y., V.K.Y., J.K., R.A.-M., J.M., A.Z., N.K.S., G.J.W., S.B., A.R.F., A.M., D.M., D.W.S., W.E.W. and M.J.B. designed the experiment; R.T., C.G., J. Hellmich, D.D., A.L., G.H., J.K. and A.Z. prepared samples; S.B., J.E.K., M.M., M.M.S., G.J.W. operated the CXI instrument; M.J.B., H.L., R.G.S., J.K., J.M., B.L.-K., S.G., R.T., C.G., J. Hellmich, J.S., D.W.S., A.M. and G.J.W. developed, tested and ran the sample delivery system; R.A.-M., U.B., M.J.B., S.B., N.E., R.J.G., P.G., C.G.,S.G., G.H., J.Hattne., J.Hellmich, J.K., J.E.K., H.L., A.L., B.L.-K., D.M., M.M., J.M., N.K.S., M.M.S., J.S., R.G.S., D.S., R.T., T.-C.W., G.J.W., V.K.Y., J.Y. and A.Z. performed the LCLS experiment; J. Hattne, N.E., J.K., J.Y., U.B., V.K.Y., P.D.A. and N.K.S. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Nicholas K Sauter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Supplementary Tables 1–3, and Supplementary Note (PDF 447 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hattne, J., Echols, N., Tran, R. et al. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers. Nat Methods 11, 545–548 (2014). https://doi.org/10.1038/nmeth.2887

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2887

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics