Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A mass spectrometry–based hybrid method for structural modeling of protein complexes

Abstract

We describe a method that integrates data derived from different mass spectrometry (MS)-based techniques with a modeling strategy for structural characterization of protein assemblies. We encoded structural data derived from native MS, bottom-up proteomics, ion mobility–MS and chemical cross-linking MS into modeling restraints to compute the most likely structure of a protein assembly. We used the method to generate near-native models for three known structures and characterized an assembly intermediate of the proteasomal base.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Workflow and benchmark of a hybrid method for structure determination of protein assemblies using complementary MS data.
Figure 2: Structural models of the intact proteasomal lid and two distinct submodules.
Figure 3: Structural models of chaperone-base assembly intermediates involved in the formation of the proteasomal base complex.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Robinson, C.V., Sali, A. & Baumeister, W. Nature 450, 973–982 (2007).

    Article  CAS  Google Scholar 

  2. Alber, F. et al. Nature 450, 683–694 (2007).

    Article  CAS  Google Scholar 

  3. Stengel, F., Aebersold, R. & Robinson, C.V. Mol. Cell. Proteomics 11, R111.014027 (2012).

    Article  Google Scholar 

  4. Lasker, K. et al. Proc. Natl. Acad. Sci. USA 109, 1380–1387 (2012).

    Article  CAS  Google Scholar 

  5. Hall, Z., Politis, A. & Robinson, C.V. Structure 20, 1596–1609 (2012).

    Article  CAS  Google Scholar 

  6. Politis, A. et al. PLoS ONE 5, e12080 (2010).

    Article  Google Scholar 

  7. Leitner, A. et al. Mol. Cell. Proteomics 9, 1634–1649 (2010).

    Article  CAS  Google Scholar 

  8. Walzthoeni, T., Leitner, A., Stengel, F. & Aebersold, R. Curr. Opin. Struct. Biol. 23, 252–260 (2013).

    Article  CAS  Google Scholar 

  9. Ruotolo, B.T. et al. Nat. Protoc. 3, 1139–1152 (2008).

    Article  CAS  Google Scholar 

  10. Leitner, A., Walzthoeni, T. & Aebersold, R. Nat. Protoc. 9, 120–137 (2014).

    Article  CAS  Google Scholar 

  11. Walzthoeni, T. et al. Nat. Methods 9, 901–903 (2012).

    Article  CAS  Google Scholar 

  12. Rinner, O. et al. Nat. Methods 5, 315–318 (2008).

    Article  CAS  Google Scholar 

  13. Lander, G.C. et al. Nature 482, 186–191 (2012).

    Article  CAS  Google Scholar 

  14. Kao, A. et al. Mol. Cell. Proteomics 11, 1566–1577 (2012).

    Article  Google Scholar 

  15. Bohn, S. et al. Biochem. Biophys. Res. Commun. 435, 250–254 (2013).

    Article  CAS  Google Scholar 

  16. Nakamura, Y. et al. Biochem. Biophys. Res. Commun. 359, 503–509 (2007).

    Article  CAS  Google Scholar 

  17. Barrault, M.B. et al. Proc. Natl. Acad. Sci. USA 109, E1001–E1010 (2012).

    Article  Google Scholar 

  18. Saeki, Y. et al. Cell 137, 900–913 (2009).

    Article  CAS  Google Scholar 

  19. Roelofs, J. et al. Nature 459, 861–865 (2009).

    Article  CAS  Google Scholar 

  20. Tomko, R.J. Jr. et al. Mol. Cell 38, 393–403 (2010).

    Article  CAS  Google Scholar 

  21. McCormick, M.S., Sazinsky, M.H., Condon, K.L. & Lippard, S.J. J. Am. Chem. Soc. 128, 15108–15110 (2006).

    Article  CAS  Google Scholar 

  22. Jabri, E. & Karplus, A. Biochemistry 35, 10616–10626 (1996).

    Article  CAS  Google Scholar 

  23. Sakata, E. et al. Mol. Cell 42, 637–649 (2011).

    Article  CAS  Google Scholar 

  24. Ghaemmaghami, S. et al. Nature 425, 737–741 (2003).

    Article  CAS  Google Scholar 

  25. Sobott, F., Hernández, H., McCammon, M.G., Tito, M.A. & Robinson, C.V. Anal. Chem. 74, 1402–1407 (2002).

    Article  CAS  Google Scholar 

  26. Hernández, H. & Robinson, C.V. Nat. Protoc. 2, 715–726 (2007).

    Article  Google Scholar 

  27. Pringle, S.D. et al. Int. J. Mass Spectrom. 261, 1–12 (2007).

    Article  CAS  Google Scholar 

  28. Kemper, P.R., Dupuis, N.F. & Bowers, M.T. Int. J. Mass Spectrom. 287, 46–57 (2009).

    Article  CAS  Google Scholar 

  29. Bush, M.F. et al. Anal. Chem. 82, 9557–9565 (2010).

    Article  CAS  Google Scholar 

  30. Russel, D. et al. PLoS Biol. 10, e1001244 (2012).

    Article  CAS  Google Scholar 

  31. Alber, F., Kim, M.F. & Sali, A. Structure 13, 435–445 (2005).

    Article  CAS  Google Scholar 

  32. Alber, F., Forster, F., Korkin, D., Topf, M. & Sali, A. Annu. Rev. Biochem. 77, 443–477 (2008).

    Article  CAS  Google Scholar 

  33. Johnson, S.C. Psychometrika 32, 241–254 (1967).

    Article  CAS  Google Scholar 

  34. Phillips, J.C. et al. J. Comput. Chem. 26, 1781–1802 (2005).

    Article  CAS  Google Scholar 

  35. Pettersen, E.F. et al. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  36. Shen, M.-y. & Sali, A. Protein Sci. 15, 2507–2524 (2006).

    Article  CAS  Google Scholar 

  37. Šali, A. & Blundell, T.L. J. Mol. Biol. 234, 779–815 (1993).

    Article  Google Scholar 

  38. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MMOH and ToMOH were a gift of S.J. Lippard (Massachusetts Institute of Technology). Urease from K. aerogenes was a gift from R.P. Hausinger (Michigan State University). This work was supported by funding from PROSPECTS (Proteomics Specification in Space and Time Grant HEALTH-F4-2008-201648) within the European Union 7th Framework Program (A.P., C.V.R. and R.A.) and from European Research Council advanced grants “Proteomics v3.0” (233226) and “IMPRESS” (268851) to R.A. and C.V.R. H.H. is funded by Medical Research Council programme grant (G1000819). F.S. is a Sir Henry Wellcome Fellow funded by the Wellcome Trust (grant 095951), and C.V.R. is funded by the Royal Society.

Author information

Authors and Affiliations

Authors

Contributions

F.S. and A.P. conceived the study; F.S., A.P., C.V.R. and R.A. designed the research; A.P. performed all modeling and developed the software; F.S. carried out the experiments; Z.H. and H.H. performed part of the IM-MS and native MS experiments. A.L. and T.W. supported CX-MS experiments and analysis; F.S. and A.P. analyzed the data; A.P., F.S., C.V.R. and R.A. wrote the paper; all authors commented on and edited the final version of the paper.

Corresponding authors

Correspondence to Carol V Robinson or Ruedi Aebersold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–30, Supplementary Tables 1–12, Supplementary Results and Supplementary Notes 1–3 (PDF 14099 kb)

Supplementary Software

Software package for modeling protein complexes from hybrid mass spectrometry data (ZIP 217 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Politis, A., Stengel, F., Hall, Z. et al. A mass spectrometry–based hybrid method for structural modeling of protein complexes. Nat Methods 11, 403–406 (2014). https://doi.org/10.1038/nmeth.2841

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2841

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing