Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings

Abstract

Mathematical methods combined with measurements of single-cell dynamics provide a means to reconstruct intracellular processes that are only partly or indirectly accessible experimentally. To obtain reliable reconstructions, the pooling of measurements from several cells of a clonal population is mandatory. However, cell-to-cell variability originating from diverse sources poses computational challenges for such process reconstruction. We introduce a scalable Bayesian inference framework that properly accounts for population heterogeneity. The method allows inference of inaccessible molecular states and kinetic parameters; computation of Bayes factors for model selection; and dissection of intrinsic, extrinsic and technical noise. We show how additional single-cell readouts such as morphological features can be included in the analysis. We use the method to reconstruct the expression dynamics of a gene under an inducible promoter in yeast from time-lapse microscopy data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modeling heterogeneous microscopy data.
Figure 2: Parameter and state inference using simulated measurements.
Figure 3: Reconstructed gene expression and promoter dynamics using simulated measurements.
Figure 4: Modeling and parameter inference for induced gene expression in yeast.
Figure 5: State reconstruction of heterogeneous reporter dynamics.
Figure 6: Sources of cell-to-cell variability in reporter expression.

Similar content being viewed by others

References

  1. Zechner, C. et al. Moment-based inference predicts bimodality in transient gene expression. Proc. Natl. Acad. Sci. USA 109, 8340–8345 (2012).

    Article  CAS  Google Scholar 

  2. Hasenauer, J. et al. Identification of models of heterogeneous cell populations from population snapshot data. BMC Bioinformatics 12, 125 (2011).

    Article  Google Scholar 

  3. Ornatsky, O. et al. Highly multiparametric analysis by mass cytometry. J. Immunol. Methods 361, 1–20 (2010).

    Article  CAS  Google Scholar 

  4. Raj, A., Peskin, C.S., Tranchina, D., Vargas, D.Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309 (2006).

    Article  Google Scholar 

  5. Neuert, G. et al. Systematic identification of signal-activated stochastic gene regulation. Science 339, 584–587 (2013).

    Article  CAS  Google Scholar 

  6. Mettetal, J.T., Muzzey, D., Gómez-Uribe, C. & van Oudenaarden, A. The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae. Science 319, 482–484 (2008).

    Article  CAS  Google Scholar 

  7. Harper, C.V. et al. Dynamic analysis of stochastic transcription cycles. PLoS Biol. 9, e1000607 (2011).

    Article  CAS  Google Scholar 

  8. Suter, D.M. et al. Mammalian genes are transcribed with widely different bursting kinetics. Science 332, 472–474 (2011).

    Article  CAS  Google Scholar 

  9. Amrein, M. & Künsch, H.R. Rate estimation in partially observed Markov jump processes with measurement errors. Stat. Comput. 22, 513–526 (2012).

    Article  Google Scholar 

  10. Golightly, A. & Wilkinson, D.J. Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo. Interface Focus 1, 807–820 (2011).

    Article  Google Scholar 

  11. Opper, M. & Sanguinetti, G. Variational inference for Markov jump processes. in Adv. Neural Inf. Process. Syst. Vol. 20 (eds. Platt, J.C., Koller, D., Singer, Y. & Roweis, D.) (MIT Press, 2009).

  12. Stathopoulos, V. & Girolami, M.A. Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation. Philos. Trans. A Math. Phys. Eng. Sci. 371, 20110541 (2013).

    Article  Google Scholar 

  13. Elowitz, M.B., Levine, A.J., Siggia, E.D. & Swain, P.S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    Article  CAS  Google Scholar 

  14. Colman-Lerner, A. et al. Regulated cell-to-cell variation in a cell-fate decision system. Nature 437, 699–706 (2005).

    Article  CAS  Google Scholar 

  15. Snijder, B. & Pelkmans, L. Origins of regulated cell-to-cell variability. Nat. Rev. Mol. Cell Biol. 12, 119–125 (2011).

    Article  CAS  Google Scholar 

  16. Bowsher, C.G. & Swain, P.S. Identifying sources of variation and the flow of information in biochemical networks. Proc. Natl. Acad. Sci. USA 109, E1320–E1328 (2012).

    Article  CAS  Google Scholar 

  17. Hilfinger, A. & Paulsson, J. Separating intrinsic from extrinsic fluctuations in dynamic biological systems. Proc. Natl. Acad. Sci. USA 108, 12167–12172 (2011).

    Article  CAS  Google Scholar 

  18. Koeppl, H., Zechner, C., Ganguly, A., Pelet, S. & Peter, M. Accounting for extrinsic variability in the estimation of stochastic rate constants. Int. J. Robust Nonlinear Control 22, 1103–1119 (2012).

    Article  Google Scholar 

  19. Aalen, O. Nonparametric inference for a family of counting processes. Ann. Stat. 6, 701–726 (1978).

    Article  Google Scholar 

  20. Doucet, A., Freitas, N., Murphy, K. & Russell, S. Rao-Blackwellised particle filtering for dynamic Bayesian networks. in 16th Annu. Conf. Uncertain. Artif. Intell. (eds. Boutilier, C. & Godszmidt, M.) 176–183 (Morgan Kaufmann, 2000).

  21. Rinott, R., Jaimovich, A. & Friedman, N. Exploring transcription regulation through cell-to-cell variability. Proc. Natl. Acad. Sci. USA 108, 6329–6334 (2011).

    Article  CAS  Google Scholar 

  22. Louvion, J.F., Havaux-Copf, B. & Picard, D. Fusion of GAL4-VP16 to a steroid-binding domain provides a tool for gratuitous induction of galactose-responsive genes in yeast. Gene 131, 129–134 (1993).

    Article  CAS  Google Scholar 

  23. McIsaac, R.S. et al. Fast-acting and nearly gratuitous induction of gene expression and protein depletion in Saccharomyces cerevisiae. Mol. Biol. Cell 22, 4447–4459 (2011).

    Article  CAS  Google Scholar 

  24. Sadowski, I., Ma, J., Triezenberg, S. & Ptashne, M. GAL4-VP16 is an unusually potent transcriptional activator. Nature 335, 563–564 (1988).

    Article  CAS  Google Scholar 

  25. Varshavsky, A. The N-end rule: functions, mysteries, uses. Proc. Natl. Acad. Sci. USA 93, 12142–12149 (1996).

    Article  CAS  Google Scholar 

  26. Hackett, E.A., Esch, K.R., Maleri, S. & Errede, B. A family of destabilized cyan fluorescent proteins as transcriptional reporters in S. cerevisiae. Yeast 23, 333–349 (2006).

    Article  CAS  Google Scholar 

  27. Pelet, S., Dechant, R., Lee, S.S., van Drogen, F. & Peter, M. An integrated image analysis platform to quantify signal transduction in single cells. Integr. Biol. (Camb.) 4, 1274–1282 (2012).

    Article  CAS  Google Scholar 

  28. Blake, W.J., Kaern, M., Cantor, C.R. & Collins, J.J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003).

    Article  CAS  Google Scholar 

  29. Zenklusen, D., Larson, D.R. & Singer, R.H. Single-RNA counting reveals alternative modes of gene expression in yeast. Nat. Struct. Mol. Biol. 15, 1263–1271 (2008).

    Article  CAS  Google Scholar 

  30. Mason, P.B. & Struhl, K. Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo. Mol. Cell 17, 831–840 (2005).

    Article  CAS  Google Scholar 

  31. Raser, J.M. & O'Shea, E.K. Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814 (2004).

    Article  CAS  Google Scholar 

  32. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using μManager. Curr. Prot. Mol. Biol. 92, 14.20 (2010).

    Google Scholar 

  33. Friedman, N., Cai, L. & Xie, X.S. Linking stochastic dynamics to population distribution: An analytical framework of gene expression. Phys. Rev. Lett. 97, 168302 (2006).

    Article  Google Scholar 

  34. Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010).

    Article  CAS  Google Scholar 

  35. Wilkinson, D.J. Stochastic Modelling for Systems Biology 1st edn. (Chapman and Hall/CRC, 2006).

  36. Küchler, U. & Sorensen, M. Exponential Families of Stochastic Processes (Springer, 1997).

  37. Anderson, D.F. A modified next reaction method for simulating chemical systems with time dependent propensities and delays. J. Chem. Phys. 127, 214107 (2007).

    Article  Google Scholar 

  38. Storvik, G. Particle filters for state-space models with the presence of unknown static parameters. IEEE Trans. Signal Process. 50, 281–289 (2002).

    Article  Google Scholar 

  39. Koller, D. & Friedman, N. Probabilistic Graphical Models: Principles and Techniques (MIT Press, 2009).

Download references

Acknowledgements

We want to thank H.R. Kuensch and J. Hasenauer for their valuable feedback on the manuscript and O. Aalen for providing us with his technical report from 1988. We thank F. Rudolf for help in designing and cloning the Y-Venus destabilized reporter and S. Lee with the fluidic setup. C.Z., M.U. and H.K. acknowledge support from the Swiss National Science Foundation, grant no. PP00P2_128503 and SystemsX.ch. S.P. and M.P. acknowledge support from the European project UNICELLSYS, European Research Council, SystemsX.ch organization (LiverX), Swiss National Science Foundation and ETH Zurich. M.U. receives support from the Life Science Zurich PhD Program on Systems Biology of Complex Diseases; and M.U., M.P. and H.K. acknowledge support from the Competence Center for Systems Physiology and Metabolic Diseases, Zurich, Switzerland.

Author information

Authors and Affiliations

Authors

Contributions

C.Z., M.U., M.P. and H.K. designed the research; C.Z. and H.K. conceived of mathematical methods, performed simulations and analyzed data; M.U. and S.P. developed strains; M.U. and S.P. performed experiments and measured data; and C.Z. and H.K. wrote the paper.

Corresponding author

Correspondence to Heinz Koeppl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Notes 1–9 (PDF 2380 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zechner, C., Unger, M., Pelet, S. et al. Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings. Nat Methods 11, 197–202 (2014). https://doi.org/10.1038/nmeth.2794

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2794

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing