Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Onco-proteogenomics: cancer proteomics joins forces with genomics

An Erratum to this article was published on 29 January 2015

This article has been updated

Abstract

The complexities of tumor genomes are rapidly being uncovered, but how they are regulated into functional proteomes remains poorly understood. Standard proteomics workflows use databases of known proteins, but these databases do not capture the uniqueness of the cancer transcriptome, with its point mutations, unusual splice variants and gene fusions. Onco-proteogenomics integrates mass spectrometry–generated data with genomic information to identify tumor-specific peptides. Linking tumor-derived DNA, RNA and protein measurements into a central-dogma perspective has the potential to improve our understanding of cancer biology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detecting tumor-specific genetic aberrations in cancer proteomics.
Figure 2: The potential impact of onco-proteogenomics in cancer research.

Similar content being viewed by others

Change history

  • 05 November 2014

    In the version of this article initially published, page numbers were missing from reference number 30. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Weinstein, J.N. et al. The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Morin, R.D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Steidl, C. et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471, 377–381 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Shapiro, I.M. et al. An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet. 7, e1002218 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tuch, B.B. et al. Tumor transcriptome sequencing reveals allelic expression imbalances associated with copy number alterations. PLoS ONE 5, e9317 (2010).

    PubMed  PubMed Central  Google Scholar 

  6. Kislinger, T. et al. Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell 125, 173–186 (2006).

    CAS  PubMed  Google Scholar 

  7. Gygi, S.P., Rochon, Y., Franza, B.R. & Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Byers, L.A. et al. Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer Discov. 2, 798–811 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ingolia, N.T., Brar, G.A., Rouskin, S., McGeachy, A.M. & Weissman, J.S. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat. Protoc. 7, 1534–1550 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mann, M., Kulak, N.A., Nagaraj, N. & Cox, J. The coming age of complete, accurate, and ubiquitous proteomes. Mol. Cell 49, 583–590 (2013).

    CAS  PubMed  Google Scholar 

  11. Amberger, J., Bocchini, C.A., Scott, A.F. & Hamosh, A. McKusick's Online Mendelian Inheritance in Man (OMIM). Nucleic Acids Res. 37, D793–D796 (2009).

    CAS  PubMed  Google Scholar 

  12. Lane, L. et al. neXtProt: a knowledge platform for human proteins. Nucleic Acids Res. 40, D76–D83 (2012).

    CAS  PubMed  Google Scholar 

  13. Kim, N., Shin, S. & Lee, S. ECgene: genome-based EST clustering and gene modeling for alternative splicing. Genome Res. 15, 566–576 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim, P. et al. ChimerDB 2.0—a knowledgebase for fusion genes updated. Nucleic Acids Res. 38, D81–D85 (2010).

    CAS  PubMed  Google Scholar 

  15. Forbes, S.A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Allmer, J. Algorithms for the de novo sequencing of peptides from tandem mass spectra. Expert Rev. Proteomics 8, 645–657 (2011).

    PubMed  Google Scholar 

  17. Fermin, D. et al. Novel gene and gene model detection using a whole genome open reading frame analysis in proteomics. Genome Biol. 7, R35 (2006).

    PubMed  PubMed Central  Google Scholar 

  18. Branca, R.M. et al. HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics. Nat. Methods 11, 59–62 (2014).

    CAS  PubMed  Google Scholar 

  19. Xing, X.-B. et al. The discovery of novel protein-coding features in mouse genome based on mass spectrometry data. Genomics 98, 343–351 (2011).

    CAS  PubMed  Google Scholar 

  20. Castellana, N.E. et al. Discovery and revision of Arabidopsis genes by proteogenomics. Proc. Natl. Acad. Sci. USA 105, 21034–21038 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gawryluk, R.M., Chisholm, K.A., Pinto, D.M. & Gray, M.W. Composition of the mitochondrial electron transport chain in Acanthamoeba castellanii: structural and evolutionary insights. Biochim. Biophys. Acta 1817, 2027–2037 (2012).

    CAS  PubMed  Google Scholar 

  22. Yates, J.R. III., Eng, J.K. & McCormack, A.L. Mining genomes: correlating tandem mass spectra of modified and unmodified peptides to sequences in nucleotide databases. Anal. Chem. 67, 3202–3210 (1995).

    CAS  PubMed  Google Scholar 

  23. Mo, F. et al. A compatible exon-exon junction database for the identification of exon skipping events using tandem mass spectrum data. BMC Bioinformatics 9, 537 (2008).

    PubMed  PubMed Central  Google Scholar 

  24. Li, M. et al. Widespread RNA and DNA sequence differences in the human transcriptome. Science 333, 53–58 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pickrell, J.K., Gilad, Y. & Pritchard, J.K. Comment on “Widespread RNA and DNA sequence differences in the human transcriptome.”. Science 335, 1302 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kleinman, C.L. & Majewski, J. Comment on “Widespread RNA and DNA sequence difference in the human transcriptome.”. Science 335, 1302 (2012).

    CAS  PubMed  Google Scholar 

  27. Frenkel-Morgenstern, M. et al. ChiTaRS: a database of human, mouse and fruit fly chimeric transcripts and RNA-sequencing data. Nucleic Acids Res. 41, D142–D151 (2013).

    CAS  PubMed  Google Scholar 

  28. Sheynkman, G.M., Shortreed, M.R., Frey, B.L. & Smith, L.M. Discovery and mass spectrometric analysis of novel splice-junction peptides using RNA-Seq. Mol. Cell. Proteomics 12, 2341–2353 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Helmy, M., Tomita, M. & Ishihama, Y. Peptide identification by searching large-scale tandem mass spectra against large databases: bioinformatics methods in proteogenomics. Genes Genomes Genomics 6, 76–85 (2012).

    Google Scholar 

  30. Nesvizhskii, A.I. Proteogenomics: concepts, applications and computational strategies. Nat. Methods 11, 1114–1125 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Risk, B.A., Spitzer, W.J. & Giddings, M.C. Peppy: proteogenomic search software. J. Proteome Res. 12, 3019–3025 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Woo, S. et al. Proteogenomic database construction driven from large scale RNA-Seq data. J. Proteome Res. 13, 21–28 (2014).

    CAS  PubMed  Google Scholar 

  33. Wang, X. & Zhang, B. customProDB: an R package to generate customized protein databases from RNA-Seq data for proteomics search. Bioinformatics 29, 3235–3237 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, B. et al. Proteogenomic characterization of human colon and rectal cancer. Nature 513, 382–387 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Helmy, M., Sugiyama, N., Tomita, M. & Ishihama, Y. Onco-proteogenomics: a novel approach to identify cancer-specific mutations combining proteomics and transcriptome deep sequencing. Genome Biol. 11 (suppl. 1), 17 (2010).

    Google Scholar 

  36. Evans, V.C. et al. De novo derivation of proteomes from transcriptomes for transcript and protein identification. Nat. Methods 9, 1207–1211 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, X. et al. Protein identification using customized protein sequence databases derived from RNA-Seq data. J. Proteome Res. 11, 1009–1017 (2012).

    CAS  PubMed  Google Scholar 

  38. Li, H., Ruan, J. & Durbin, R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 18, 1851–1858 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Halvey, P.J. et al. Proteogenomic analysis reveals unanticipated adaptations of colorectal tumor cells to deficiencies in DNA mismatch repair. Cancer Res. 74, 387–397 (2014).

    CAS  PubMed  Google Scholar 

  40. Aquino, P.F. et al. Exploring the proteomic landscape of a gastric cancer biopsy with the Shotgun Imaging Analyzer. J. Proteome Res. 13, 314–320 (2014).

    CAS  PubMed  Google Scholar 

  41. Menon, R. & Omenn, G.S. Proteomic characterization of novel alternative splice variant proteins in human epidermal growth factor receptor 2/neu–induced breast cancers. Cancer Res. 70, 3440–3449 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Aebersold, R. et al. The biology/disease-driven human proteome project (B/D-HPP): enabling protein research for the life sciences community. J. Proteome Res. 12, 23–27 (2013).

    CAS  PubMed  Google Scholar 

  43. Gonzalez-Perez, A. et al. Computational approaches to identify functional genetic variants in cancer genomes. Nat. Methods 10, 723–729 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, H., Sadygov, R.G. & Yates, J.R. III. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 76, 4193–4201 (2004).

    CAS  PubMed  Google Scholar 

  45. Freed-Pastor, W.A. & Prives, C. Mutant p53: one name, many proteins. Genes Dev. 26, 1268–1286 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lawrence, M.S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jagtap, P. et al. A two-step database search method improves sensitivity in peptide sequence matches for metaproteomics and proteogenomics studies. Proteomics 13, 1352–1357 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nesvizhskii, A.I., Vitek, O. & Aebersold, R. Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat. Methods 4, 787–797 (2007).

    CAS  PubMed  Google Scholar 

  49. Boutros, P.C. et al. Global optimization of somatic variant identification in cancer genomes with a global community challenge. Nat. Genet. 46, 318–319 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. O'Rawe, J. et al. Low concordance of multiple variant-calling pipelines: practical implications for exome and genome sequencing. Genome Med. 5, 28 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wis´niewski, J.R. et al. Extensive quantitative remodeling of the proteome between normal colon tissue and adenocarcinoma. Mol. Syst. Biol. 8, 611 (2012).

    Google Scholar 

  52. Moghaddas Gholami, A. et al. Global proteome analysis of the NCI-60 cell line panel. Cell Rep. 4, 609–620 (2013).

    Google Scholar 

  53. Branca, R.M. et al. HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics. Nat. Methods 11, 59–62 (2014).

    CAS  PubMed  Google Scholar 

  54. Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  55. Khan, Z. et al. Primate transcript and protein expression levels evolve under compensatory selection pressures. Science 342, 1100–1104 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Dennis, J.W., Nabi, I.R. & Demetriou, M. Metabolism, cell surface organization, and disease. Cell 139, 1229–1241 (2009).

    PubMed  PubMed Central  Google Scholar 

  58. Dufour, A. & Overall, C.M. Missing the target: matrix metalloproteinase antitargets in inflammation and cancer. Trends Pharmacol. Sci. 34, 233–242 (2013).

    CAS  PubMed  Google Scholar 

  59. McDermott, J.E. et al. Challenges in biomarker discovery: combining expert insights with statistical analysis of complex omics data. Expert Opin. Med. Diagn. 7, 37–51 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Brinton, L.T., Brentnall, T.A., Smith, J.A. & Kelly, K.A. Metastatic biomarker discovery through proteomics. Cancer Genomics Proteomics 9, 345–355 (2012).

    CAS  PubMed  Google Scholar 

  61. Johansson, Å. et al. Identification of genetic variants influencing the human plasma proteome. Proc. Natl. Acad. Sci. USA 110, 4673–4678 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu, L. et al. Variation and genetic control of protein abundance in humans. Nature 499, 79–82 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Maier, T. et al. Quantification of mRNA and protein and integration with protein turnover in a bacterium. Mol. Syst. Biol. 7, 511 (2011).

    PubMed  PubMed Central  Google Scholar 

  64. Boisvert, F.M. et al. A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol. Cell. Proteomics 11, M111.011429 (2012).

    PubMed  Google Scholar 

  65. Smith, L.M. & Kelleher, N.L. Proteoform: a single term describing protein complexity. Nat. Methods 10, 186–187 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Elschenbroich, S. & Kislinger, T. Targeted proteomics by selected reaction monitoring mass spectrometry: applications to systems biology and biomarker discovery. Mol. Biosyst. 7, 292–303 (2011).

    CAS  PubMed  Google Scholar 

  67. Keshishian, H., Addona, T., Burgess, M., Kuhn, E. & Carr, S.A. Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol. Cell. Proteomics 6, 2212–2229 (2007).

    CAS  PubMed  Google Scholar 

  68. Stahl-Zeng, J. et al. High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Mol. Cell. Proteomics 6, 1809–1817 (2007).

    CAS  PubMed  Google Scholar 

  69. Halvey, P.J., Ferrone, C.R. & Liebler, D.C. GeLC-MRM quantitation of mutant KRAS oncoprotein in complex biological samples. J. Proteome Res. 11, 3908–3913 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Anderson, N.L. et al. Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). J. Proteome Res. 3, 235–244 (2004).

    CAS  PubMed  Google Scholar 

  71. Hembrough, T. et al. Selected reaction monitoring (SRM) analysis of epidermal growth factor receptor (EGFR) in formalin fixed tumor tissue. Clin. Proteomics 9, 5 (2012).

    PubMed  PubMed Central  Google Scholar 

  72. Khatun, J. et al. Whole human genome proteogenomic mapping for ENCODE cell line data: identifying protein-coding regions. BMC Genomics 14, 141 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Menon, R. et al. Identification of novel alternative splice isoforms of circulating proteins in a mouse model of human pancreatic cancer. Cancer Res. 69, 300–309 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sun, H. et al. Identification of gene fusions from human lung cancer mass spectrometry data. BMC Genomics 14 (suppl. 8), S5 (2013).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

T.K. is supported through the Canadian Research Chairs Program. This work was supported in part by grants from the Canadian Institute of Health Research (MOP-93772 to T.K. and MOP-114896 to T.K. and P.C.B.), by the Ontario Ministry of Health and Long Term Care, with the support of the Ontario Institute for Cancer Research to P.C.B. through funding provided by the Government of Ontario and by a Movember Discovery grant from Prostate Cancer Canada (D2013-21) to T.K. and P.C.B. This work was supported by Prostate Cancer Canada and is proudly funded by the Movember Foundation (#RS2014-01). P.C.B. was supported by a Terry Fox Research Institute New Investigator Award. J.A.A. is supported by a Natural Sciences and Engineering Research Council of Canada doctoral fellowship (CGS-D). A.S. was supported through by a Department of Medical Biophysics Excellence Award and by a Kristi Piia CALLUM Memorial Fellowship. The authors thank R.X. Sun and J.D. Watson for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T.K. and P.C.B. conceived of the project. J.A.A., A.S., T.K. and P.C.B. wrote the manuscript.

Corresponding authors

Correspondence to Thomas Kislinger or Paul C Boutros.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfaro, J., Sinha, A., Kislinger, T. et al. Onco-proteogenomics: cancer proteomics joins forces with genomics. Nat Methods 11, 1107–1113 (2014). https://doi.org/10.1038/nmeth.3138

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3138

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer