Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

From genes to protein mechanics on a chip

A Corrigendum to this article was published on 29 January 2015

This article has been updated

Abstract

Single-molecule force spectroscopy enables mechanical testing of individual proteins, but low experimental throughput limits the ability to screen constructs in parallel. We describe a microfluidic platform for on-chip expression, covalent surface attachment and measurement of single-molecule protein mechanical properties. A dockerin tag on each protein molecule allowed us to perform thousands of pulling cycles using a single cohesin-modified cantilever. The ability to synthesize and mechanically probe protein libraries enables high-throughput mechanical phenotyping.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Method workflow.
Figure 2: Representative single-molecule force traces recorded in different protein spots on a single chip with a single cantilever.
Figure 3: Unfolding and rupture statistics from multiple force traces.

Similar content being viewed by others

Change history

  • 05 November 2014

    In the version of this article initially published, the grant "European Research Council Grant Cellufuel (Advanced Grant 294438)" was mistakenly left out of the Acknowledgements. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Thomas, W.E., Trintchina, E., Forero, M., Vogel, V. & Sokurenko, E.V. Cell 109, 913–923 (2002).

    Article  CAS  Google Scholar 

  2. Li, C. & Xu, Q. Cell. Signal. 12, 435–445 (2000).

    Article  CAS  Google Scholar 

  3. Engler, A.J., Sen, S., Sweeney, H.L. & Discher, D.E. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  4. Müller, D., Helenius, J., Alsteens, D. & Dufrêne, Y.F. Nat. Chem. Biol. 5, 383–390 (2009).

    Article  Google Scholar 

  5. Florin, E.-L., Moy, V.T. & Gaub, H.E. Science 264, 415–417 (1994).

    Article  CAS  Google Scholar 

  6. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. & Gaub, H. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  7. Fernandez, J.M. & Li, H. Science 303, 1674–1678 (2004).

    Article  CAS  Google Scholar 

  8. Oesterhelt, F. et al. Science 288, 143–146 (2000).

    Article  CAS  Google Scholar 

  9. Abbondanzieri, E.A., Greenleaf, W.J., Shaevitz, J.W., Landick, R. & Block, S.M. Nature 438, 460–465 (2005).

    Article  CAS  Google Scholar 

  10. Bryant, Z. et al. Nature 424, 338–341 (2003).

    Article  CAS  Google Scholar 

  11. Linke, W.A. Cardiovasc. Res. 77, 637–648 (2008).

    CAS  PubMed  Google Scholar 

  12. Yin, J. et al. Proc. Natl. Acad. Sci. USA 102, 15815–15820 (2005).

    Article  CAS  Google Scholar 

  13. Bayer, E.A., Belaich, J.-P., Shoham, Y. & Lamed, R. Annu. Rev. Microbiol. 58, 521–554 (2004).

    Article  CAS  Google Scholar 

  14. Maerkl, S.J. & Quake, S.R. Science 315, 233–237 (2007).

    Article  CAS  Google Scholar 

  15. Rockel, S., Geertz, M., Hens, K., Deplancke, B. & Maerkl, S.J. Nucleic Acids Res. 41, e52 (2013).

    Article  CAS  Google Scholar 

  16. Gerber, D., Maerkl, S.J. & Quake, S.R. Nat. Methods 6, 71–74 (2009).

    Article  CAS  Google Scholar 

  17. Otten, M., Wolf, P. & Gaub, H.E. Lab Chip 13, 4198–4204 (2013).

    Article  CAS  Google Scholar 

  18. Thorsen, T., Maerkl, S.J. & Quake, S.R. Science 298, 580–584 (2002).

    Article  CAS  Google Scholar 

  19. Garcia-Cordero, J.L. & Maerkl, S.J. Chem. Commun. 49, 1264–1266 (2013).

    Article  CAS  Google Scholar 

  20. Gumpp, H., Stahl, S.W., Strackharn, M., Puchner, E.M. & Gaub, H.E. Rev. Sci. Instrum. 80, 063704 (2009).

    Article  CAS  Google Scholar 

  21. Stahl, S.W. et al. Proc. Natl. Acad. Sci. USA 109, 20431–20436 (2012).

    Article  CAS  Google Scholar 

  22. Li, L., Huang, H.H.-L., Badilla, C.L. & Fernandez, J.M. J. Mol. Biol. 345, 817–826 (2005).

    Article  CAS  Google Scholar 

  23. Rief, M., Pascual, J., Saraste, M. & Gaub, H.E. J. Mol. Biol. 286, 553–561 (1999).

    Article  CAS  Google Scholar 

  24. Dietz, H. & Rief, M. Proc. Natl. Acad. Sci. USA 103, 1244–1247 (2006).

    Article  CAS  Google Scholar 

  25. Greene, D.N. et al. Biophys. J. 95, 1360–1370 (2008).

    Article  CAS  Google Scholar 

  26. Puchner, E.M., Franzen, G., Gautel, M. & Gaub, H.E. Biophys. J. 95, 426–434 (2008).

    Article  CAS  Google Scholar 

  27. Jobst, M.A., Schoeler, C., Malinowska, K. & Nash, M.A. J. Vis. Exp. 82, e50950 (2013).

    Google Scholar 

  28. Gibson, C.T., Smith, D.A. & Roberts, C.J. Nanotechnology 16, 234–238 (2005).

    Article  CAS  Google Scholar 

  29. Gibson, D.G. et al. Nat. Methods 6, 343–345 (2009).

    Article  CAS  Google Scholar 

  30. Zimmermann, J.L., Nicolaus, T., Neuert, G. & Blank, K. Nat. Protoc. 5, 975–985 (2010).

    Article  CAS  Google Scholar 

  31. Huang, B., Wu, H., Kim, S. & Zare, R.N. Lab Chip 5, 1005–1007 (2005).

    Article  CAS  Google Scholar 

  32. Hutter, J.L. & Bechhoefer, J. Rev. Sci. Instrum. 64, 1868 (1993).

    Article  CAS  Google Scholar 

  33. Cook, S.M. et al. Nanotechnology 17, 2135–2145 (2006).

    Article  CAS  Google Scholar 

  34. Proksch, R., Schäffer, T.E., Cleveland, J.P., Callahan, R.C. & Viani, M.B. Nanotechnology 15, 1344–1350 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

M.O. is grateful to the Elite Network of Bavaria (IDK-NBT) for a doctoral fellowship. M.A.N. acknowledges support from Society in Science—The Branco Weiss Fellowship administered by the ETH Zürich. The authors acknowledge support from the DFG Sonderforschungsbereich 1032 and the European Research Council Grant Cellufuel (Advanced Grant 294438). The authors thank E. Bayer (Weizmann Institute) for starting genetic materials used for Doc and Coh modules.

Author information

Authors and Affiliations

Authors

Contributions

M.O., M.A.N. and H.E.G. designed the research; M.O., W.O., M.A.J. and T.V. performed experiments; D.A.P. helped with immobilization strategies; M.O., W.O., M.A.J., L.F.M. and M.A.N. performed data analysis; M.O., W.O., M.A.J., M.A.N. and H.E.G. cowrote the manuscript.

Corresponding author

Correspondence to Michael A Nash.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Microfluidic chip overview.

(a) Photograph of a microfluidic chip bonded to a glass slide with a US dime for scale. Control channels are filled with food dye for better visualization. (b) Pattern of a typical DNA array, consisting of repeats of rows with four different genes and one row with nothing spotted as negative control. (c) Photograph of a bonded PDMS chip onto the glass slide with DNA spots in the back chamber. The orange highlighted frame shows a zoom in of the bottom left corner. (d) Typical fluorescence collage assembled from 640 single fluorescence micrographs of each protein chamber on one single chip shows pattern of expressed protein (assembly not to scale). Fluorescence signal of TagRFP reveals expression levels and Dockerin specificity. Here, low passivation of the protein chamber facilitates visualization. (e) Three of 640 adjacent dumbbell-shaped chambers, one with sfGFP DNA spotted (left), one with Xylanase DNA (center) and one negative control without DNA (right). Control channels are visualized with food dye: neck valve (green), sandwich valve (red), and button valve (blue). (f) Fluorescence images showing GFP signal (top) from expressed and immobilized ybbR-sfGFP-Dockerin (left), ybbR-Xylanase-Dockerin (center) with negative control lacking the spotted DNA (right). The bottom row shows the signal from the TagRFP detection construct, which specifically bound to the Dockerin tag via the Cohesin domain.

Supplementary Figure 2 Diagram of the expression vector pET28a with an individual gene of interest.

Supplementary Figure 3 Schematic of the fibronectin tetramer gene cassette.

Supplementary Figure 4 Schematic of the sfGFP dimer gene cassette.

Supplementary Figure 5 Schematic of the spectrin dimer gene cassette.

Supplementary Figure 6 Schematic of the xylanase gene cassette.

Supplementary Figure 7 Exemplary force traces

Example curves showing (a) uninterpretable interaction, (b) non-specific interaction of cantilever with surface, (c) no interaction, and (d) a specific Xylanase-Dockerin unfolding and unbinding trace. Curves similar to those shown in a-c were excluded from the analysis.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–3 and Supplementary Discussion (PDF 6736 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otten, M., Ott, W., Jobst, M. et al. From genes to protein mechanics on a chip. Nat Methods 11, 1127–1130 (2014). https://doi.org/10.1038/nmeth.3099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3099

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing