Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Optogenetics: the age of light

The optogenetic revolution is transforming neuroscience. The dramatic recent progress in using light to both control and read out neural activity has highlighted the need for better probes, improved light delivery and more careful interpretation of results, which will all be required for optogenetics to fully realize its remarkable potential.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optogenetics can be applied at all levels of brain function.

Kim Caesar/Nature Publishing Group

References

  1. Scanziani, M. & Häusser, M. Nature 461, 930–939 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Hill, D.K. & Keynes, R.D. J. Physiol. 108, 278–281 (1949).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Crick, F.H. Sci. Am. 241, 219–232 (1979).

    Article  CAS  PubMed  Google Scholar 

  4. Deisseroth, K. et al. J. Neurosci. 26, 10380–10386 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bargmann, C. et al. BRAIN 2025: a scientific vision. Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Working Group Report to the Advisory Committee to the Director, NIH http://www.nih.gov/science/brain/2025/ (US National Institutes of Health, 2014).

  6. Sahel, J.A. & Roska, B. Annu. Rev. Neurosci. 36, 467–488 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Deisseroth, K. Nature 505, 309–317 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Packer, A.M. et al. Nat. Methods 9, 1202–1205 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Prakash, R. et al. Nat. Methods 9, 1171–1179 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yizhar, O. et al. Nature 477, 171–178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin, J.Y., Knutsen, P.M., Muller, A., Kleinfeld, D. & Tsien, R.Y. Nat. Neurosci. 16, 1499–1508 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kato, H.E. et al. Nature 482, 369–374 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Berndt, A., Lee, S.Y., Ramakrishnan, C. & Deisseroth, K. Science 344, 420–424 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wietek, J. et al. Science 344, 409–412 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Chow, B.Y. et al. Nature 463, 98–102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chuong, A.S. et al. Nat. Neurosci. 17, 1123–1129 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, T.W. et al. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thestrup, T. et al. Nat. Methods 11, 175–182 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Hochbaum, D.R. et al. Nat. Methods 11, 825–833 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kravitz, A.V. & Bonci, A. Front. Behav. Neurosci. 7, 169 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu, X. et al. Nature 484, 381–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramirez, S. et al. Science 341, 387–391 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Schoenenberger, P., Scharer, Y.P. & Oertner, T.G. Exp. Physiol. 96, 34–39 (2011).

    Article  PubMed  Google Scholar 

  24. Jackman, S.L., Beneduce, B.M., Drew, I.R. & Regehr, W.G. J. Neurosci. 34, 7704–7714 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Packer, A.M., Roska, B. & Häusser, M. Nat. Neurosci. 16, 805–815 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dana, H. et al. PLoS ONE 9, e108697 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Miyashita, T., Shao, Y. R., Chung, J., Pourzia, O. & Feldman, D. E. Front. Neural Circuits 7, 8 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tian, L. et al. Nat. Methods 6, 875–881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cao, G. et al. Cell 154, 904–913 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Nikolenko, V. et al. Front. Neural Circuits 2, 5 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Judkewitz, B., Rizzi, M., Kitamura, K. & Häusser, M. Nat. Protoc. 4, 862–869 (2009).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Häusser.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Häusser, M. Optogenetics: the age of light. Nat Methods 11, 1012–1014 (2014). https://doi.org/10.1038/nmeth.3111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing