Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Parallel measurement of dynamic changes in translation rates in single cells

Abstract

Protein concentrations are often regulated by dynamic changes in translation rates. Nevertheless, it has been challenging to directly monitor changes in translation in living cells. We have developed a reporter system to measure real-time changes of translation rates in human or mouse individual cells by conjugating translation regulatory motifs to sequences encoding a nuclear targeted fluorescent protein and a controllable destabilization domain. Application of the method showed that individual cells undergo marked fluctuations in the translation rate of mRNAs whose 5′ terminal oligopyrimidine (5′ TOP) motif regulates the synthesis of ribosomal proteins. Furthermore, we show that small reductions in amino acid levels signal through different mTOR-dependent pathways to control TOP mRNA translation, whereas larger reductions in amino acid levels control translation through eIF2A. Our study demonstrates that dynamic measurements of single-cell activities of translation regulatory motifs can be used to identify and investigate fundamental principles of translation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of a live-cell fluorescent reporter to measure changes in translation rates.
Figure 2: Measurement of dynamic changes in translation rates using a TOP 5′ UTR reporter.
Figure 3: Comparison of relative activity changes of two translation motifs in the same cells.
Figure 4: TOP mRNA translation rates fluctuate over time even in cells under basal conditions.
Figure 5: Single-cell measurement of the relationship between the phosphorylation of translational machinery–associated proteins and TOP mRNA translation rates.
Figure 6: Distinct signaling pathways regulate the translation of mRNAs with TOP motifs.

Similar content being viewed by others

References

  1. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Article  PubMed  Google Scholar 

  2. Zong, Q., Schummer, M., Hood, L. & Morris, D.R. Messenger RNA translation state: the second dimension of high-throughput expression screening. Proc. Natl. Acad. Sci. USA 96, 10632–10636 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Johannes, G., Carter, M.S., Eisen, M.B., Brown, P.O. & Sarnow, P. Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc. Natl. Acad. Sci. USA 96, 13118–13123 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kuhn, K.M., Derisi, J.L., Brown, P.O. & Sarnow, P. Global and specific translational regulation in the genomic response of Saccharomyces cerevisiae to a rapid transfer from a fermentable to a nonfermentable carbon source. Mol. Cell. Biol. 21, 916–927 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arava, Y. et al. Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 100, 3889–3894 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ingolia, N.T., Ghaemmaghami, S., Newman, J.R.S. & Weissman, J.S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roux, P.P. et al. RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J. Biol. Chem. 282, 14056–14064 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Choo, A.Y., Yoon, S.-O., Kim, S.G., Roux, P.P. & Blenis, J. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc. Natl. Acad. Sci. USA 105, 17414–17419 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Braunstein, S. et al. A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer. Mol. Cell 28, 501–512 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Elowitz, M.B., Levine, A.J., Siggia, E.D. & Swain, P.S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Mukherji, S. et al. MicroRNAs can generate thresholds in target gene expression. Nat. Genet. 43, 854–859 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nelson, D.E. et al. Oscillations in NF-κB signaling control the dynamics of gene expression. Science 306, 704–708 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Tay, S. et al. Single-cell NF-κB dynamics reveal digital activation and analogue information processing. Nature 466, 267–271 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iwamoto, M., Björklund, T., Lundberg, C., Kirik, D. & Wandless, T.J. A general chemical method to regulate protein stability in the mammalian central nervous system. Chem. Biol. 17, 981–988 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Appenzeller-Herzog, C. & Hall, M.N. Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. Trends Cell Biol. 22, 274–282 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Uetsuki, T., Naito, A., Nagata, S. & Kaziro, Y. Isolation and characterization of the human chromosomal gene for polypeptide chain elongation factor- lα. J. Biol. Chem. 264, 5791–5798 (1989).

    CAS  PubMed  Google Scholar 

  17. Levy, S., Avni, D., Hariharan, N., Perry, R.P. & Meyuhas, O. Oligopyrimidine tract at the 5′ end of mammalian ribosomal protein mRNAs is required for their translational control. Proc. Natl. Acad. Sci. USA 88, 3319–3323 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Geyer, P.K., Meyuhas, O., Perry, R.P. & Johnson, L.F. Regulation of ribosomal protein mRNA content and translation in growth-stimulated mouse fibroblasts. Mol. Cell. Biol. 2, 685–693 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Caldarola, S., Amaldi, F., Proud, C.G. & Loreni, F. Translational regulation of terminal oligopyrimidine mRNAs induced by serum and amino acids involves distinct signaling events. J. Biol. Chem. 279, 13522–13531 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Meyuhas, O. Synthesis of the translational apparatus is regulated at the translational level. Eur. J. Biochem. 267, 6321–6330 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Tang, H. et al. Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation. Mol. Cell. Biol. 21, 8671–8683 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kurokawa, H. et al. Software for precise tracking of cell proliferation. Biochem. Biophys. Res. Commun. 417, 1080–1085 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Thoreen, C.C. et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, Q. et al. Discovery of 9-(6-aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2) as a potent, selective, and orally available mammalian target of rapamycin (mTOR) inhibitor for treatment of cancer. J. Med. Chem. 54, 1473–1480 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jang, S.K. & Wimmer, E. Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57-kD RNA-binding protein. Genes Dev. 4, 1560–1572 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Hsieh, A.C. et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485, 55–61 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Holcik, M. & Sonenberg, N. Translational control in stress and apoptosis. Nat. Rev. Mol. Cell Biol. 6, 318–327 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Ruvinsky, I. & Meyuhas, O. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem. Sci. 31, 342–348 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Ma, X.M. & Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10, 307–318 (2009).

    Article  PubMed  Google Scholar 

  30. Holcik, M., Sonenberg, N. & Korneluk, R.G. Internal ribosome initiation of translation and the control of cell death. Trends Genet. 16, 469–473 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Ruvinsky, I. et al. Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev. 19, 2199–2211 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meyuhas, O. & Dreazen, A. Ribosomal protein S6 kinase from TOP mRNAs to cell size. Prog. Mol. Biol. Transl. Sci. 90, 109–153 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Le Bacquer, O. et al. Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2. J. Clin. Invest. 117, 387–396 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Damgaard, C.K. & Lykke-Andersen, J. Translational coregulation of 5′TOP mRNAs by TIA-1 and TIAR. Genes Dev. 25, 2057–2068 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Kishore, S. et al. A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat. Methods 8, 559–564 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F.-C. Tsai, a former graduate student of the Meyer lab, for the original Matlab code that was modified and used here to track single cells in the movies. The tunable ecDHFR plasmid was provided by T. Wandless (Stanford University). K.H. was supported by Stanford Graduate Fellowship. The work was supported by US National Institutes of Health grant GM030179.

Author information

Authors and Affiliations

Authors

Contributions

K.H. designed the reporter and the experiments, performed the experiments and analyzed the data. A.J. performed RNA FISH and provided the Matlab script to analyze the RNA FISH data. G.D. contributed to the development of the reporter. N.S. and O.M. provided MEFs. K.H. and T.M. interpreted the results and wrote the manuscript. All authors discussed the results and the manuscript. T.M. supervised the study.

Corresponding authors

Correspondence to Kyuho Han or Tobias Meyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 (PDF 6706 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, K., Jaimovich, A., Dey, G. et al. Parallel measurement of dynamic changes in translation rates in single cells. Nat Methods 11, 86–93 (2014). https://doi.org/10.1038/nmeth.2729

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2729

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing