Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrating protein-protein interaction networks with phenotypes reveals signs of interactions

An Erratum to this article was published on 27 June 2014

This article has been updated

Abstract

A major objective of systems biology is to organize molecular interactions as networks and to characterize information flow within networks. We describe a computational framework to integrate protein-protein interaction (PPI) networks and genetic screens to predict the 'signs' of interactions (i.e., activation-inhibition relationships). We constructed a Drosophila melanogaster signed PPI network consisting of 6,125 signed PPIs connecting 3,352 proteins that can be used to identify positive and negative regulators of signaling pathways and protein complexes. We identified an unexpected role for the metabolic enzymes enolase and aldo-keto reductase as positive and negative regulators of proteolysis, respectively. Characterization of the activation-inhibition relationships between physically interacting proteins within signaling pathways will affect our understanding of many biological functions, including signal transduction and mechanisms of disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Framework to predict the signs of protein interactions.
Figure 2: Drosophila signed PPI network properties.
Figure 3
Figure 4: Validation of predicted proteasome regulators.

Similar content being viewed by others

Change history

  • 17 March 2014

    In the version of this article initially published, there was an error in the expression describing the sign score Ssign. The variable Tn in the denominator should have been Tp. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Guruharsha, K.G. et al. A protein complex network of Drosophila melanogaster. Cell 147, 690–703 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gavin, A.C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Krogan, N.J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Stelzl, U. et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 122, 957–968 (2005).

    CAS  PubMed  Google Scholar 

  5. Rual, J.F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Friedman, A. & Perrimon, N. Genetic screening for signal transduction in the era of network biology. Cell 128, 225–231 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Kholodenko, B., Yaffe, M.B. & Kolch, W. Computational approaches for analyzing information flow in biological networks. Sci. Signal. 5, re1 (2012).

    Article  PubMed  Google Scholar 

  8. Hyduke, D.R. & Palsson, B.O. Towards genome-scale signalling network reconstructions. Nat. Rev. Genet. 11, 297–307 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Kirouac, D.C. et al. Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks. BMC Syst. Biol. 6, 29 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vinayagam, A. et al. A directed protein interaction network for investigating intracellular signal transduction. Sci. Signal. 4, rs8 (2011).

    Article  PubMed  Google Scholar 

  11. Liu, W. et al. Proteome-wide prediction of signal flow direction in protein interaction networks based on interacting domains. Mol. Cell Proteomics 8, 2063–2070 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yeger-Lotem, E. et al. Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity. Nat. Genet. 41, 316–323 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gitter, A., Carmi, M., Barkai, N. & Bar-Joseph, Z. Linking the signaling cascades and dynamic regulatory networks controlling stress responses. Genome Res. 23, 365–376 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Singh, R. Algorithms for the analysis of protein interaction networks. Ch. 6, 91–102 PhD thesis, Massachusetts Institute of Technology (2012).

  15. Linding, R. et al. Systematic discovery of in vivo phosphorylation networks. Cell 129, 1415–1426 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Flockhart, I.T. et al. FlyRNAi.org—the database of the Drosophila RNAi screening center: 2012 update. Nucleic Acids Res. 40, D715–D719 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Gilsdorf, M. et al. GenomeRNAi: a database for cell-based RNAi phenotypes. 2009 update. Nucleic Acids Res. 38, D448–D452 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Neumüller, R.A. et al. Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. Cell Stem Cell 8, 580–593 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mummery-Widmer, J.L. et al. Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi. Nature 458, 987–992 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Neumüller, R.A. et al. Conserved regulators of nucleolar size revealed by global phenotypic analyses. Sci. Signal. 6, ra70 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Korcsmáros, T. et al. Uniformly curated signaling pathways reveal tissue-specific cross-talks and support drug target discovery. Bioinformatics 26, 2042–2050 (2010).

    Article  PubMed  Google Scholar 

  22. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Stark, C. et al. The BioGRID Interaction Database: 2011 update. Nucleic Acids Res. 39, D698–D704 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Kerrien, S. et al. The IntAct molecular interaction database in 2012. Nucleic Acids Res. 40, D841–D846 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Salwinski, L. et al. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Licata, L. et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 40, D857–D861 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Murali, T. et al. DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for Drosophila. Nucleic Acids Res. 39, D736–D743 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Girvan, M. & Newman, M.E. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Graveley, B.R. et al. The developmental transcriptome of Drosophila melanogaster. Nature 471, 473–479 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Facchetti, G., Iacono, G. & Altafini, C. Computing global structural balance in large-scale signed social networks. Proc. Natl. Acad. Sci. USA 108, 20953–20958 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma, W., Trusina, A., El-Samad, H., Lim, W.A. & Tang, C. Defining network topologies that can achieve biochemical adaptation. Cell 138, 760–773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vinayagam, A. et al. Protein complex-based analysis framework for high-throughput data sets. Sci. Signal. 6, rs5 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Friedman, A.A. et al. Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-regulated kinase signaling. Sci. Signal. 4, rs10 (2011).

    PubMed  PubMed Central  Google Scholar 

  34. Dahlmann, B. Role of proteasomes in disease. BMC Biochem. 8 (suppl. 1), S3 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Díaz -Ramos, A., Roig-Borrellas, A., García-Melero, A. & López-Alemany, R. α-Enolase, a multifunctional protein: its role on pathophysiological situations. J. Biomed. Biotechnol. 2012, 156795 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mindnich, R.D. & Penning, T.M. Aldo-keto reductase (AKR) superfamily: genomics and annotation. Hum. Genomics 3, 362–370 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ebert, B., Kisiela, M., Wsól, V. & Maser, E. Proteasome inhibitors MG-132 and bortezomib induce AKR1C1, AKR1C3, AKR1B1, and AKR1B10 in human colon cancer cell lines SW-480 and HT-29. Chem. Biol. Interact. 191, 239–249 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Franceschini, A. et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808–D815 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Collins, S.R. et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446, 806–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Fuchs, F. et al. Clustering phenotype populations by genome-wide RNAi and multiparametric imaging. Mol. Syst. Biol. 6, 370 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Venkatesan, K. et al. An empirical framework for binary interactome mapping. Nat. Methods 6, 83–90 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Doncheva, N.T., Assenov, Y., Domingues, F.S. & Albrecht, M. Topological analysis and interactive visualization of biological networks and protein structures. Nat. Protoc. 7, 670–685 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Wernicke, S. & Rasche, F. FANMOD: a tool for fast network motif detection. Bioinformatics 22, 1152–1153 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Bai, J., Sepp, K.J. & Perrimon, N. Culture of Drosophila primary cells dissociated from gastrula embryos and their use in RNAi screening. Nat. Protoc. 4, 1502–1512 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Bai, J. et al. RNA interference screening in Drosophila primary cells for genes involved in muscle assembly and maintenance. Development 135, 1439–1449 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Sepp, K.J. et al. Identification of neural outgrowth genes using genome-wide RNAi. PLoS Genet. 4, e1000111 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ranganayakulu, G., Schulz, R.A. & Olson, E.N. Wingless signaling induces nautilus expression in the ventral mesoderm of the Drosophila embryo. Dev. Biol. 176, 143–148 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Housden, Y. Kwon, I.T. Flockhart and S. Rajagopal for helpful suggestions for tool development and manuscript preparation. This work was financially supported by P01-CA120964, R01-GM067761 and R01DK088718. S.E.M. is also supported in part by the Dana-Farber/Harvard Cancer Center (P30-CA06516). N.P. is supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

A.V. and N.P. conceived of and designed the project. A.V. developed the computational method and built and analyzed the signed network. J.Z. designed and performed experimental validation. C.R. and B.Y. developed the SignedPPI database. A.V. and S.E.M. coordinated the development of the SignedPPI database. A.V. and Y.H. compiled RNAi screens. A.A.S. analyzed modENCODE expression data. R.A.N. contributed the unpublished RNAi screen. All authors contributed to manuscript preparation.

Corresponding authors

Correspondence to Arunachalam Vinayagam or Norbert Perrimon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11, Supplementary Tables 1–6, 8, 9 and 11–14 (PDF 3922 kb)

Supplementary Table 7

Signed PPI network integrated with gene-expression datasets from modENCODE database (XLSX 799 kb)

Supplementary Table 10

List of triad motifs extracted from the signed network (XLSX 184 kb)

Supplementary Table 15

Signed functional interaction network constructed based on STRING interactions. Only STRING interactions with confidence score ≥ 700 is considered for the analysis (XLSX 2275 kb)

Supplementary Data

Images correspond to RNAi screen in Drosophila primary embryonic muscle cells. Each image corresponds to a single gene and a single field out of 24 fields per well. Individual image files are named as follows, gene names followed by the amplicon ID (ZIP 84492 kb)

Supplementary Software

SignPredictor tool to predict signed PPIs. (ZIP 591 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinayagam, A., Zirin, J., Roesel, C. et al. Integrating protein-protein interaction networks with phenotypes reveals signs of interactions. Nat Methods 11, 94–99 (2014). https://doi.org/10.1038/nmeth.2733

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2733

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing