Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multiparametric imaging of biological systems by force-distance curve–based AFM

Abstract

A current challenge in the life sciences is to understand how biological systems change their structural, biophysical and chemical properties to adjust functionality. Addressing this issue has been severely hampered by the lack of methods capable of imaging biosystems at high resolution while simultaneously mapping their multiple properties. Recent developments in force-distance (FD) curve–based atomic force microscopy (AFM) now enable researchers to combine (sub)molecular imaging with quantitative mapping of physical, chemical and biological interactions. Here we discuss the principles and applications of advanced FD-based AFM tools for the quantitative multiparametric characterization of complex cellular and biomolecular systems under physiological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FD curve–based AFM reveals topography and quantitative maps of multiple properties of biological samples.
Figure 2: Recording FD curves using functionalized atomic force microscope tips to characterize physical, chemical and biological properties of biological samples.
Figure 3: FD-based AFM imaging and mapping of the mechanical properties of cells and viruses.
Figure 4: High-resolution FD-based AFM of native proteins.
Figure 5: High-resolution FD-based AFM mapping of chemical and biological sites on living cells.

Similar content being viewed by others

References

  1. Ludwig, M., Dettmann, W. & Gaub, H.E. Atomic force microscope imaging contrast based on molecular recognition. Biophys. J. 72, 445–448 (1997). Pioneering work showing for the first time that FD-based AFM can be applied to image micropatterned surfaces that have been functionalized with receptors (streptavidin) and to map the specific interactions of the receptors with ligands (biotin) functionalizing the microscope tip.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gad, M., Itoh, A. & Ikai, A. Mapping cell wall polysaccharides of living microbial cells using atomic force microscopy. Cell Biol. Int. 21, 697–706 (1997).

    CAS  PubMed  Google Scholar 

  3. Heinz, W.F. & Hoh, J.H. Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. Trends Biotechnol. 17, 143–150 (1999).

    CAS  PubMed  Google Scholar 

  4. Grandbois, M., Dettmann, W., Benoit, M. & Gaub, H.E. Affinity imaging of red blood cells using an atomic force microscope. J. Histochem. Cytochem. 48, 719–724 (2000).

    CAS  PubMed  Google Scholar 

  5. Hinterdorfer, P. & Dufrêne, Y.F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3, 347–355 (2006).

    CAS  PubMed  Google Scholar 

  6. Roos, W.H., Bruinsma, R. & Wuite, G.J.L. Physical virology. Nat. Phys. 6, 733–743 (2010).

    CAS  Google Scholar 

  7. Gerber, C. & Lang, H.P. How the doors to the nanoworld were opened. Nat. Nanotechnol. 1, 3–5 (2006).

    CAS  PubMed  Google Scholar 

  8. Müller, D.J. & Dufrêne, Y.F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotechnol. 3, 261–269 (2008).

    PubMed  Google Scholar 

  9. Butt, H.-J., Cappella, B. & Kappl, M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 59, 1–152 (2005). An excellent and extensive review describing the potential possibilities and caveats of force measurements with the AFM. A must for all of those dealing with force measurements.

    CAS  Google Scholar 

  10. Müller, D.J., Helenius, J., Alsteens, D. & Dufrêne, Y.F. Force probing surfaces of living cells to molecular resolution. Nat. Chem. Biol. 5, 383–390 (2009).

    PubMed  Google Scholar 

  11. Viani, M.B. et al. Small cantilevers for force spectroscopy of single molecules. J. Appl. Phys. 86, 2258–2262 (1999).

    CAS  Google Scholar 

  12. Viani, M.B. et al. Probing protein-protein interactions in real time. Nat. Struct. Biol. 7, 644–647 (2000).

    CAS  PubMed  Google Scholar 

  13. Dong, M. & Sahin, O. A nanomechanical interface to rapid single-molecule interactions. Nat. Commun. 2, 247 (2011).

    PubMed  Google Scholar 

  14. Martínez-Martín, D., Herruzo, E.T., Dietz, C., Gomez-Herrero, J. & Garcia, R. Noninvasive protein structural flexibility mapping by bimodal dynamic force microscopy. Phys. Rev. Lett. 106, 198101 (2011).

    PubMed  Google Scholar 

  15. Martínez-Martín, D. et al. Resolving structure and mechanical properties at the nanoscale of viruses with frequency modulation atomic force microscopy. PLoS ONE 7, e30204 (2012).

    PubMed  PubMed Central  Google Scholar 

  16. Butt, H.-J. & Jaschke, M. Calculation of thermal noise in atomic force microscopy. Nanotechnology 6, 1–7 (1995).

    Google Scholar 

  17. Florin, E.-L. et al. Sensing specific molecular interactions with the atomic force microscope. Biosens. Bioelectron. 10, 895–901 (1995).

    CAS  Google Scholar 

  18. Lee, G.U., Kidwell, D.A. & Colton, R.J. Sensing discrete streptavidin-biotin interactions with atomic force microscopy. Langmuir 10, 354–357 (1994).

    CAS  Google Scholar 

  19. Moy, V.T., Florin, E.-L. & Gaub, H.E. Intermolecular forces and energies between ligands and receptors. Science 266, 257–259 (1994).

    CAS  PubMed  Google Scholar 

  20. Dammer, U. et al. Specific antigen/antibody interactions measured by force microscopy. Biophys. J. 70, 2437–2441 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Frisbie, C.D., Rozsnyai, L.F., Noy, A., Wrighton, M.S. & Lieber, C.M. Functional group imaging by chemical force microscopy. Science 265, 2071–2074 (1994).

    CAS  PubMed  Google Scholar 

  22. Lee, H., Scherer, N.F. & Messersmith, P.B. Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. USA 103, 12999–13003 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dague, E. et al. Chemical force microscopy of single live cells. Nano Lett. 7, 3026–3030 (2007).

    CAS  PubMed  Google Scholar 

  24. Dorobantu, L.S., Bhattacharjee, S., Foght, J.M. & Gray, M.R. Atomic force microscopy measurement of heterogeneity in bacterial surface hydrophobicity. Langmuir 24, 4944–4951 (2008).

    CAS  PubMed  Google Scholar 

  25. Frederix, P.L. et al. Atomic force bio-analytics. Curr. Opin. Chem. Biol. 7, 641–647 (2003).

    CAS  PubMed  Google Scholar 

  26. Tang, J. et al. Recognition imaging and highly ordered molecular templating of bacterial S-layer nanoarrays containing affinity-tags. Nano Lett. 8, 4312–4319 (2008).

    CAS  PubMed  Google Scholar 

  27. Almqvist, N. et al. Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. Biophys. J. 86, 1753–1762 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Arnal, L. et al. Adhesin contribution to nanomechanical properties of the virulent Bordetella pertussis envelope. Langmuir 28, 7461–7469 (2012).

    CAS  PubMed  Google Scholar 

  29. Friedsam, C., Del Campo Bécares, A., Jonas, U., Gaub, H.E. & Seitz, M. Polymer functionalized AFM tips for long-term measurements in single-molecule force spectroscopy. ChemPhysChem 5, 388–393 (2004).

    CAS  PubMed  Google Scholar 

  30. Zimmermann, J.L., Nicolaus, T., Neuert, G. & Blank, K. Thiol-based, site-specific and covalent immobilization of biomolecules for single-molecule experiments. Nat. Protoc. 5, 975–985 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Bergkvist, M. & Cady, N.C. Chemical functionalization and bioconjugation strategies for atomic force microscope cantilevers. Methods Mol. Biol. 751, 381–400 (2011).

    CAS  PubMed  Google Scholar 

  32. Barattin, R. & Voyer, N. Chemical modifications of atomic force microscopy tips. Methods Mol. Biol. 736, 457–483 (2011).

    CAS  PubMed  Google Scholar 

  33. Bell, G.I. Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978).

    CAS  PubMed  Google Scholar 

  34. Evans, E. Probing the relation between force—lifetime—and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001). The energy landscape of a weak bond along a dissociation pathway is explored through Brownian-thermal excitations. This Review explains how dynamic force spectroscopy can be applied to probe the complex relation between force, lifetime and chemistry in single biomolecular bonds and to probe the bond's energy barriers that are difficult or impossible to detect in near-equilibrium assays.

    Article  CAS  PubMed  Google Scholar 

  35. Evans, E.A. & Calderwood, D.A. Forces and bond dynamics in cell adhesion. Science 316, 1148–1153 (2007).

    CAS  PubMed  Google Scholar 

  36. Evans, E. Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy. Faraday Discuss. 111, 1–16 (1999).

    Google Scholar 

  37. Dudko, O.K., Hummer, G. & Szabo, A. Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys. Rev. Lett. 96, 108101 (2006).

    PubMed  Google Scholar 

  38. Dudko, O.K., Hummer, G. & Szabo, A. Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc. Natl. Acad. Sci. USA 105, 15755–15760 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Medalsy, I., Hensen, U. & Müller, D.J. Imaging and quantifying chemical and physical properties of native proteins at molecular resolution by force–volume AFM. Angew. Chem. Int. Ed. Engl. 50, 12103–12108 (2011). This work applies FD-based AFM to image proteins in physiological relevant conditions and to simultaneously map their multiple chemical and physical properties at high resolution (1–2 nm). It is also shown that FD-based AFM is sufficiently sensitive to image single polypeptide loops of native proteins in their fully extended state and to mechanically adjust the conformation of single loops.

    CAS  PubMed  Google Scholar 

  40. Hansma, P.K., Schitter, G., Fantner, G.E. & Prater, C. Applied physics. High-speed atomic force microscopy. Science 314, 601–602 (2006).

    CAS  PubMed  Google Scholar 

  41. Ando, T. High-speed atomic force microscopy coming of age. Nanotechnology 23, 062001 (2012).

    PubMed  Google Scholar 

  42. Dietz, C. et al. Nanotomography with enhanced resolution using bimodal atomic force microscopy. Appl. Phys. Lett. 92, 143107 (2008).

    Google Scholar 

  43. Dong, M., Husale, S. & Sahin, O. Determination of protein structural flexibility by microsecond force spectroscopy. Nat. Nanotechnol. 4, 514–517 (2009). Specially designed torsional harmonic cantilevers have been applied to perform high-speed force spectroscopic measurements while imaging purple membranes extracted from Halobacterium salinarum by AFM. Topographic and simultaneously recorded flexibility maps measure the Young's modulus of the two surfaces of the light-driven proton-pump bacteriorhodopsin that is embedded in the purple membrane.

    CAS  PubMed  Google Scholar 

  44. Fukuma, T., Ueda, Y., Yoshioka, S. & Asakawa, H. Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy. Phys. Rev. Lett. 104, 016101 (2010).

    PubMed  Google Scholar 

  45. Garcia, R. & Herruzo, E.T. The emergence of multifrequency force microscopy. Nat. Nanotechnol. 7, 217–226 (2012). An excellent overview of recent advances of multifrequency force microscopy. As discussed in our Review, these advances bring great potential to further improve the speed and sensitivity of FD-based AFM.

    CAS  PubMed  Google Scholar 

  46. Jaafar, M. et al. Drive-amplitude-modulation atomic force microscopy: from vacuum to liquids. Beilstein J. Nanotechnol. 3, 336–344 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Giessibl, F.J. Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys. Rev. B Condens. Matter Mater. Phys. 56, 16010–16015 (1997).

    CAS  Google Scholar 

  48. Thomas, W.E., Vogel, V. & Sokurenko, E. Biophysics of catch bonds. Annu. Rev. Biophys. 37, 399–416 (2008).

    CAS  PubMed  Google Scholar 

  49. Kong, F. et al. Cyclic mechanical reinforcement of integrin-ligand interactions. Mol. Cell 49, 1060–1068 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Evans, E., Leung, A., Heinrich, V. & Zhu, C. Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond. Proc. Natl. Acad. Sci. USA 101, 11281–11286 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Medalsy, I.D. & Müller, D.J. Nanomechanical properties of proteins and membranes depend on loading rate and electrostatic interactions. ACS Nano 7, 2642–2650 (2013).

    CAS  PubMed  Google Scholar 

  52. Polyakov, P. et al. Automated force volume image processing for biological samples. PLoS ONE 6, e18887 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Roduit, C. et al. OpenFovea: open-source AFM data processing software. Nat. Methods 9, 774–775 (2012).

    CAS  PubMed  Google Scholar 

  54. Weisenhorn, A.L., Khorsandi, M., Kasas, S., Gotzos, V. & Butt, H.-J. Deformation and height anomaly of soft surfaces studied with an AFM. Nanotechnology 4, 106–113 (1993).

    CAS  Google Scholar 

  55. Rotsch, C., Jacobson, K. & Radmacher, M. Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc. Natl. Acad. Sci. USA 96, 921–926 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Végh, A.G. et al. Spatial and temporal dependence of the cerebral endothelial cells elasticity. J. Mol. Recognit. 24, 422–428 (2011).

    PubMed  Google Scholar 

  57. Picas, L., Rico, F., Deforet, M. & Scheuring, S. Structural and mechanical heterogeneity of the erythrocyte membrane reveals hallmarks of membrane stability. ACS Nano 7, 1054–1063 (2013).

    CAS  PubMed  Google Scholar 

  58. Heu, C., Berquand, A., Elie-Caille, C. & Nicod, L. Glyphosate-induced stiffening of HaCaT keratinocytes, a Peak Force Tapping study on living cells. J. Struct. Biol. 178, 1–7 (2012). One of the first times FD-based AFM was applied to characterize the structure and mechanical properties of human epidermal cells (HaCaT keratinocyte) under near-physiological conditions. The experiments show that herbicides induce cell membrane stiffening, the appearance of cytoskeleton structures at a subcellular level and membrane damage.

    CAS  PubMed  Google Scholar 

  59. Matzke, R., Jacobson, K. & Radmacher, M. Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nat. Cell Biol. 3, 607–610 (2001).

    CAS  PubMed  Google Scholar 

  60. Cross, S.E., Jin, Y.S., Rao, J. & Gimzewski, J.K. Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2, 780–783 (2007).

    CAS  PubMed  Google Scholar 

  61. Plodinec, M. et al. The nanomechanical signature of breast cancer. Nat. Nanotechnol. 7, 757–765 (2012).

    CAS  PubMed  Google Scholar 

  62. Francius, G. et al. Detection, localization, and conformational analysis of single polysaccharide molecules on live bacteria. ACS Nano 2, 1921–1929 (2008).

    CAS  PubMed  Google Scholar 

  63. Touhami, A., Nysten, B. & Dufrêne, Y.F. Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19, 4539–4543 (2003).

    CAS  Google Scholar 

  64. Pletikapic´, G., Berquand, A., Radic´, T.M. & Svetlic˘ic´, V. Quantitative nanomechanical mapping of marine diatom in seawater using peak force tapping atomic force microscopy. J. Phycol. 48, 174–185 (2012).

    PubMed  Google Scholar 

  65. Roos, W.H. et al. Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids. Proc. Natl. Acad. Sci. USA 106, 9673–9678 (2009). AFM images and FD curves were recorded to characterize the structure and mechanical stability of herpes simplex virus type 1 (HSV1) capsids. The measurements suggested that HSV1 capsids are stabilized after removal of the scaffold proteins and that this stabilization is triggered by the packaging of DNA but independent of the actual presence of DNA.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Carrasco, C. et al. Built-in mechanical stress in viral shells. Biophys. J. 100, 1100–1108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zink, M. & Grubmüller, H. Mechanical properties of the icosahedral shell of southern bean mosaic virus: a molecular dynamics study. Biophys. J. 96, 1350–1363 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Carrasco, C. et al. DNA-mediated anisotropic mechanical reinforcement of a virus. Proc. Natl. Acad. Sci. USA 103, 13706–13711 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sullan, R.M., Li, J.K. & Zou, S. Direct correlation of structures and nanomechanical properties of multicomponent lipid bilayers. Langmuir 25, 7471–7477 (2009). FD-based AFM was applied to characterize the structure and mechanical responses of different phases and mixtures of lipid bilayers. The breakthrough forces, elastic moduli, adhesion forces and indentation of the microscope tip in dependence of the different phases in the lipid bilayers were systematically determined on the nanometer scale and presented as 2D maps.

    CAS  PubMed  Google Scholar 

  70. An, H., Nussio, M.R., Huson, M.G., Voelcker, N.H. & Shapter, J.G. Material properties of lipid microdomains: force-volume imaging study of the effect of cholesterol on lipid microdomain rigidity. Biophys. J. 99, 834–844 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Möller, C., Allen, M., Elings, V., Engel, A. & Müller, D.J. Tapping-mode atomic force microscopy produces faithful high-resolution images of protein surfaces. Biophys. J. 77, 1150–1158 (1999).

    PubMed  PubMed Central  Google Scholar 

  72. Engel, A. & Müller, D.J. Observing single biomolecules at work with the atomic force microscope. Nat. Struct. Biol. 7, 715–718 (2000).

    CAS  PubMed  Google Scholar 

  73. Rico, F., Su, C. & Scheuring, S. Mechanical mapping of single membrane proteins at submolecular resolution. Nano Lett. 11, 3983–3986 (2011).

    CAS  PubMed  Google Scholar 

  74. Thoma, J., Bosshart, P., Pfreundschuh, M. & Müller, D.J. Out but not in: the large transmembrane β-barrel protein FhuA unfolds but cannot refold via β-hairpins. Structure 20, 2185–2190 (2012).

    CAS  PubMed  Google Scholar 

  75. Sweers, K.K., van der Werf, K.O., Bennink, M.L. & Subramaniam, V. Atomic force microscopy under controlled conditions reveals structure of C-terminal region of a-synuclein in amyloid fibrils. ACS Nano 6, 5952–5960 (2012).

    CAS  PubMed  Google Scholar 

  76. Zhang, S. et al. Coexistence of ribbon and helical fibrils originating from hIAPP20–29 revealed by quantitative nanomechanical atomic force microscopy. Proc. Natl. Acad. Sci. USA 110, 2798–2803 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wegmann, S., Medalsy, I.D., Mandelkow, E. & Müller, D.J. The fuzzy coat of pathological human Tau fibrils is a two-layered polyelectrolyte brush. Proc. Natl. Acad. Sci. USA 110, E313–E321 (2013).

    CAS  PubMed  Google Scholar 

  78. Wegmann, S. et al. Human Tau isoforms assemble into ribbon-like fibrils that display polymorphic structure and stability. J. Biol. Chem. 285, 27302–27313 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Alsteens, D. et al. High-resolution imaging of chemical and biological sites on living cells using peak force tapping atomic force microscopy. Langmuir 28, 16738–16744 (2012).

    CAS  PubMed  Google Scholar 

  80. Alsteens, D. et al. Organization of the mycobacterial cell wall: a nanoscale view. Pflugers Arch. 456, 117–125 (2008).

    CAS  PubMed  Google Scholar 

  81. Stroh, C. et al. Single-molecule recognition imaging microscopy. Proc. Natl. Acad. Sci. USA 101, 12503–12507 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kim, H., Arakawa, H., Osada, T. & Ikai, A. Quantification of cell adhesion force with AFM: distribution of vitronectin receptors on a living MC3T3-E1 cell. Ultramicroscopy 97, 359–363 (2003).

    CAS  PubMed  Google Scholar 

  83. Kim, H. et al. Quantification of the number of EP3 receptors on a living CHO cell surface by the AFM. Ultramicroscopy 106, 652–662 (2006).

    CAS  PubMed  Google Scholar 

  84. Chtcheglova, L.A., Waschke, J., Wildling, L., Drenckhahn, D. & Hinterdorfer, P. Nano-scale dynamic recognition imaging on vascular endothelial cells. Biophys. J. 93, L11–L13 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Roduit, C. et al. Elastic membrane heterogeneity of living cells revealed by stiff nanoscale membrane domains. Biophys. J. 94, 1521–1532 (2008).

    CAS  PubMed  Google Scholar 

  86. Dupres, V. et al. Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nat. Methods 2, 515–520 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Molecular Biology Organization (EMBO) (ALTF 506-2012); Swiss National Science Foundation (SNF); Belgian National Foundation for Scientific Research (FNRS); Université Catholique de Louvain; Belgian Federal Office for Scientific, Technical and Cultural Affairs (Interuniversity Poles of Attraction Programme); and Research Department of the Communauté Française de Belgique (Concerted Research Action).

Author information

Authors and Affiliations

Authors

Contributions

Manuscript and figures were assembled and outlined by Y.F.D. and D.J.M. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Yves F Dufrêne or Daniel J Müller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dufrêne, Y., Martínez-Martín, D., Medalsy, I. et al. Multiparametric imaging of biological systems by force-distance curve–based AFM. Nat Methods 10, 847–854 (2013). https://doi.org/10.1038/nmeth.2602

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2602

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing