Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TALE-mediated modulation of transcriptional enhancers in vivo

Abstract

We tested whether transcription activator–like effectors (TALEs) could mediate repression and activation of endogenous enhancers in the Drosophila genome. TALE repressors (TALERs) targeting each of the five even-skipped (eve) stripe enhancers generated repression specifically of the focal stripes. TALE activators (TALEAs) targeting the eve promoter or enhancers caused increased expression primarily in cells normally activated by the promoter or targeted enhancer, respectively. This effect supports the view that repression acts in a dominant fashion on transcriptional activators and that the activity state of an enhancer influences TALE binding or the ability of the VP16 domain to enhance transcription. In these assays, the Hairy repression domain did not exhibit previously described long-range transcriptional repression activity. The phenotypic effects of TALER and TALEA expression in larvae and adults are consistent with the observed modulations of eve expression. TALEs thus provide a novel tool for detection and functional modulation of transcriptional enhancers in their native genomic context.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TALERs targeted to the promoter can repress expression of eve.
Figure 2: TALE targeted activation of the eve promoter.
Figure 3: TALER targeted repression of the eve stripe 2 enhancer.
Figure 4: TALE targeted repression and activation of eve stripe enhancers.
Figure 5: Phenotypes resulting from enhancer-TALEA-VP64 activation of eve enhancers.

Similar content being viewed by others

References

  1. Spitz, F. & Furlong, E.E.M. Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet. 13, 613–626 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  3. Frankel, N. Multiple layers of complexity in cis-regulatory regions of developmental genes. Dev. Dyn. 241, 1857–1866 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Small, S., Blair, A. & Levine, M. Regulation of even-skipped stripe 2 in the Drosophila embryo. EMBO J. 11, 4047–4057 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Davis, G.K., Srinivasan, D.G., Wittkopp, P.J. & Stern, D.L. The function and regulation of Ultrabithorax in the legs of Drosophila melanogaster. Dev. Biol. 308, 621–631 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Klingler, M., Soong, J., Butler, B. & Gergen, J.P. Disperse versus compact elements for the regulation of runt stripes in Drosophila. Dev. Biol. 177, 73–84 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509–1512 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Moscou, M.J. & Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Mahfouz, M.M. et al. Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. Plant Mol. Biol. 78, 311–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Morbitzer, R., Römer, P., Boch, J. & Lahaye, T. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc. Natl. Acad. Sci. USA 107, 21617–21622 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maeder, M.L. et al. Robust, synergistic regulation of human gene expression using TALE activators. Nat. Methods 10, 243–245 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Perez-Pinera, P. et al. Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat. Methods 10, 239–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cong, L., Zhou, R., Kuo, Y.-c., Cunniff, M. & Zhang, F. Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat. Commun. 3, 968 (2012).

    Article  PubMed  Google Scholar 

  14. Garg, A., Lohmueller, J.J., Silver, P.A. & Armel, T.Z. Engineering synthetic TAL effectors with orthogonal target sites. Nucleic Acids Res. 40, 7584–7595 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, Y., Moore, R., Guinn, M. & Bleris, L. Transcription activator-like effector hybrids for conditional control and rewiring of chromosomal transgene expression. Sci. Rep. 2, 897 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Geissler, R. et al. Transcriptional activators of human genes with programmable DNA-specificity. PLoS ONE 6, e19509 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, F. et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol. 29, 149–153 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gray, S. & Levine, M. Short-range transcriptional repressors mediate both quenching and direct repression within complex loci in Drosophila. Genes Dev. 10, 700–710 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Li, L.M. & Arnosti, D.N. Long- and short-range transcriptional repressors induce distinct chromatin states on repressed genes. Curr. Biol. 21, 406–412 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cai, H.N., Arnosti, D.N. & Levine, M. Long-range repression in the Drosophila embryo. Proc. Natl. Acad. Sci. USA 93, 9309–9314 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harding, K., Rushlow, C., Doyle, H.J., Hoey, T. & Levine, M. Cross-regulatory interactions among pair-rule genes in Drosophila. Science 233, 953–959 (1986).

    Article  CAS  PubMed  Google Scholar 

  23. Frasch, M., Warrior, R., Tugwood, J. & Levine, M. Molecular analysis of even-skipped mutants in Drosophila development. Genes Dev. 2, 1824–1838 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Fujioka, M., Emi-Sarker, Y., Yusibova, G.L., Goto, T. & Jaynes, J.B. Analysis of an even-skipped rescue transgene reveals both composite and discrete neuronal and early blastoderm enhancers, and multi-stripe positioning by gap gene repressor gradients. Development 126, 2527–2538 (1999).

    CAS  PubMed  Google Scholar 

  25. Small, S., Arnosti, D.N. & Levine, M. Spacing ensures autonomous expression of different stripe enhancers in the even-skipped promoter. Development 119, 762–772 (1993).

    CAS  PubMed  Google Scholar 

  26. Tracey, W.D., Ning, X., Klingler, M., Kramer, S.G. & Gergen, J.P. Quantitative analysis of gene function in the Drosophila embryo. Genetics 154, 273–284 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Nüsslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    Article  PubMed  Google Scholar 

  28. Staller, M.V. et al. Depleting gene activities in early Drosophila embryos with the “maternal-Gal4-shRNA” system. Genetics 193, 51–61 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manoukian, A.S. & Krause, H.M. Concentration-dependent activities of the even-skipped protein in Drosophila embryos. Genes Dev. 6, 1740–1751 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Small, S., Blair, A. & Levine, M. Regulation of even-skipped stripe 2 in the Drosophila embryo. EMBO J. 11, 4047–4057 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ludwig, M.Z., Manu, Kittler, R., White, K.P. & Kreitman, M. Consequences of eukaryotic enhancer architecture for gene expression dynamics, development, and fitness. PLoS Genet. 7, e1002364 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Clyde, D.E. et al. A self-organizing system of repressor gradients establishes segmental complexity in Drosophila. Nature 426, 849–853 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Jiang, J., Hoey, T. & Levine, M. Autoregulation of a segmentation gene in Drosophila: combinatorial interaction of the even-skipped homeo box protein with a distal enhancer element. Genes Dev. 5, 265–277 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Wunderlich, Z. et al. Dissecting sources of quantitative gene expression pattern divergence between Drosophila species. Mol. Syst. Biol. 8, 604 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ludwig, M.Z. et al. Functional evolution of a cis-regulatory module. PLoS Biol. 3, e93 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Berg, O.G., Winter, R.B. & von Hippel, P.H. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20, 6929–6948 (1981).

    Article  CAS  PubMed  Google Scholar 

  37. Barolo, S. & Levine, M. hairy mediates dominant repression in the Drosophila embryo. EMBO J. 16, 2883–2891 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kaplan, T. et al. Quantitative models of the mechanisms that control genome-wide patterns of transcription factor binding during early Drosophila development. PLoS Genet. 7, e1001290 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, X.-Y. et al. The role of chromatin accessibility in directing the widespread, overlapping patterns of Drosophila transcription factor binding. Genome Biol. 12, R34 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Davidson, E.H. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution (Academic Press, 2006).

  41. Pfeiffer, B.D. et al. Refinement of tools for targeted gene expression in Drosophila. Genetics 186, 735–755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Martin and A. DePace (Harvard Medical School) for the eveS2-lacZ enhancer flies; E. Preger-Ben Noon and C. Standley for comments on the manuscript; and B. Pfeiffer, M. Schroeder, R. Mann and the entire Stern lab for discussion. We also thank the Janelia Farm Research Campus community for facilitating this work and for providing an inspiring scientific environment.

Author information

Authors and Affiliations

Authors

Contributions

J.C. conceived of, designed and executed the experiments and analyzed the data, with mentorship from D.L.S. J.C. and D.L.S. wrote the manuscript.

Corresponding author

Correspondence to Justin Crocker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Note

Supplementary Figures 1–8 and Supplementary Note 1 (PDF 51029 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crocker, J., Stern, D. TALE-mediated modulation of transcriptional enhancers in vivo. Nat Methods 10, 762–767 (2013). https://doi.org/10.1038/nmeth.2543

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2543

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing