Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Ultrahigh accuracy imaging modality for super-localization microscopy

Abstract

Super-localization microscopy encompasses techniques that depend on the accurate localization of individual molecules from generally low-light images. The obtainable localization accuracies, however, are ultimately limited by the image detector's pixelation and noise. We present the ultrahigh accuracy imaging modality (UAIM), which allows users to obtain accuracies approaching the accuracy that is achievable only in the absence of detector pixelation and noise, and which we found can experimentally provide a >200% accuracy improvement over conventional low-light imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: UAIM and its applications.
Figure 2: Experimental and theoretical demonstration of UAIM.

Similar content being viewed by others

References

  1. Thompson, M.A., Lew, M.D. & Moerner, W.E. Annu. Rev. Biophys. 41, 321–342 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Lidke, K.A., Rieger, B., Jovin, T.M. & Heintzmann, R. Opt. Express 13, 7052–7062 (2005).

    PubMed  Google Scholar 

  3. Betzig, E. et al. Science 313, 1642–1645 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Ram, S., Prabhat, P., Chao, J., Ward, E.S. & Ober, R.J. Biophys. J. 95, 6025–6043 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pavani, S.R.P. et al. Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van de Linde, S. et al. Nat. Protoc. 6, 991–1009 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Hynecek, J. IEEE Trans. Electron Devices 48, 2238–2241 (2001).

    Article  Google Scholar 

  8. Larkin, J.D., Publicover, N.G. & Sutko, J.L. J. Microsc. 241, 54–68 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Ober, R.J., Ram, S. & Ward, E.S. Biophys. J. 86, 1185–1200 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Patterson, G.H. J. Microsc. 243, 1–7 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carlton, P.M. et al. Proc. Natl. Acad. Sci. USA 107, 16016–16022 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chao, J., Ward, E.S. & Ober, R.J. Multidimens. Syst. Signal Process. 23, 349–379 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mortensen, K.I., Churchman, L.S., Spudich, J.A. & Flyvbjerg, H. Nat. Methods 7, 377–381 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Matsuo, K., Teich, M.C. & Saleh, B.E.A. IEEE Trans. Electron Devices 32, 2615–2623 (1985).

    Article  Google Scholar 

  15. Hollenhorst, J.N. IEEE Trans. Electron Devices 37, 781–788 (1990).

    Article  Google Scholar 

  16. Hynecek, J. & Nishiwaki, T. IEEE Trans. Electron Devices 50, 239–245 (2003).

    Article  Google Scholar 

  17. Basden, A.G., Haniff, C.A. & Mackay, C.D. Mon. Not. R. Astron. Soc. 345, 985–991 (2003).

    Article  Google Scholar 

  18. Rohr, K. J. Math. Imaging Vis. 7, 7–22 (1997).

    Article  Google Scholar 

  19. Ades, E.W. et al. J. Invest. Dermatol. 99, 683–690 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Zheng, W. & Zhao, Q. Brain Res. 958, 371–380 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Born, M. & Wolf, E. Principles of Optics 7th edn. (Cambridge University Press, 1999).

  22. Ram, S., Ward, E.S. & Ober, R.J. Multidimens. Syst. Signal Process. 17, 27–57 (2006).

    Article  Google Scholar 

  23. Olivo-Marin, J.C. Pattern Recognit. 35, 1989–1996 (2002).

    Article  Google Scholar 

  24. Chao, J., Ward, E.S. & Ober, R.J. IEEE Trans. Inf. Technol. Biomed. 14, 1075–1087 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grant R01 GM085575 from the US National Institutes of Health and in part by the Cancer Prevention and Research Institute of Texas. We thank D. Kim and S. You for their assistance with data analysis.

Author information

Authors and Affiliations

Authors

Contributions

J.C., S.R. and R.J.O. conceived the experiments, designed the experiments and analyzed the data. J.C. and S.R. performed the experiments. E.S.W. and R.J.O. provided the experimental materials and computing resources. All authors wrote the manuscript.

Corresponding author

Correspondence to Raimund J Ober.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Tables 1–3 and Supplementary Notes 1–15 (PDF 1891 kb)

Single-molecule tracking of an ErbB2 cell surface receptor labeled with anti- ErbB2 Fab Atto 647N

The left panel shows the UAIM image, which was acquired at a 1,000 × magnification with an EMCCD camera. The top right panel shows the compacted version of the UAIM image, which was created by a 10 × 10 binning. The bottom right plot shows the two-dimensional trajectory of the ErbB2 receptor that is highlighted by the red box (red arrow) in the UAIM image (compacted image). The trajectory is color-coded from red to green to blue to indicate increasing time, and the video is played at the acquisition speed. For display purposes, the UAIM images were multiplied by a constant and then piecewise linearly adjusted, and the compacted images were piecewise linearly adjusted. Scale bars, 1 μm. (MOV 37032 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, J., Ram, S., Ward, E. et al. Ultrahigh accuracy imaging modality for super-localization microscopy. Nat Methods 10, 335–338 (2013). https://doi.org/10.1038/nmeth.2396

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2396

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing