Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Improved low-resolution crystallographic refinement with Phenix and Rosetta

Abstract

Refinement of macromolecular structures against low-resolution crystallographic data is limited by the ability of current methods to converge on a structure with realistic geometry. We developed a low-resolution crystallographic refinement method that combines the Rosetta sampling methodology and energy function with reciprocal-space X-ray refinement in Phenix. On a set of difficult low-resolution cases, the method yielded improved model geometry and lower free R factors than alternate refinement methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of Phenix, CNS-DEN, REFMAC5 and Rosetta-Phenix refinements on a realistic low-resolution test set of 15 proteins (Supplementary Table 1).
Figure 2: Refinement of the Ca2+ ATPase (PDB 3FPS, PDB 2ZBG) using Rosetta-Phenix.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Brünger, A.T., DeLaBarre, B., Davies, J.M. & Weis, W.I. Acta Crystallogr. D Biol. Crystallogr. 65, 128–133 (2009).

    Article  Google Scholar 

  2. Schröder, G.F., Levitt, M. & Brünger, A.T. Nature 464, 1218–1222 (2010).

    Article  Google Scholar 

  3. Fenn, T.D. & Schnieders, M.J. Acta Crystallogr. D Biol. Crystallogr. 67, 957–965 (2011).

    Article  CAS  Google Scholar 

  4. Haddadian, E.J. et al. Biophys. J. 101, 899–909 (2011).

    Article  CAS  Google Scholar 

  5. Koparde, V.N., Scarsdale, J.N. & Kellogg, G.E. PLoS ONE 6, e15920 (2011).

    Article  CAS  Google Scholar 

  6. Headd, J.J. et al. Acta Crystallogr. D Biol. Crystallogr. 68, 381–390 (2012).

    Article  CAS  Google Scholar 

  7. Nicholls, R.A., Long, F. & Murshudov, G.N. Acta Crystallogr. D Biol. Crystallogr. 68, 404–417 (2012).

    Article  CAS  Google Scholar 

  8. Smart, O.S. et al. Acta Crystallogr. D Biol. Crystallogr. 68, 368–380 (2012).

    Article  CAS  Google Scholar 

  9. Afonine, P.V. et al. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).

    Article  CAS  Google Scholar 

  10. Adams, P.D., Pannu, N.S., Read, R.J. & Brünger, A.T. Proc. Natl. Acad. Sci. USA 94, 5018–5023 (1997).

    Article  CAS  Google Scholar 

  11. DiMaio, F., Leaver-Fay, A., Bradley, P., Baker, D. & Andre, I. PLoS ONE 6, e20450 (2011).

    Article  CAS  Google Scholar 

  12. Adams, P.D. et al. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  13. Fleishman, S.J. et al. PLoS ONE 6, e20161 (2011).

    Article  CAS  Google Scholar 

  14. Brünger, A.T. et al. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  15. Murshudov, G.N. et al. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).

    Article  CAS  Google Scholar 

  16. Chen, V.B. et al. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  Google Scholar 

  17. Bankston, J.R. et al. Proc. Natl. Acad. Sci. USA 109, 7899–7904 (2012).

    Article  CAS  Google Scholar 

  18. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  19. Das, R. & Baker, D. Annu. Rev. Biochem. 77, 363–382 (2008).

    Article  CAS  Google Scholar 

  20. Brünger, A.T. et al. Acta Crystallogr. D Biol. Crystallogr. 68, 391–403 (2012).

    Article  Google Scholar 

  21. DiMaio, F. et al. Nature 473, 540–543 (2011).

    Article  CAS  Google Scholar 

  22. McCoy, A.J. et al. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  23. Bunkóczi, G. & Read, R.J. Acta Crystallogr. D Biol. Crystallogr. 67, 303–312 (2011).

    Article  Google Scholar 

  24. Oeffner, R., Bunkóczi, G. & Read, R.J. Computat. Crystallogr. Newslett. 3, 5–10 (2012).

    Google Scholar 

  25. Abrahams, D. & Grosse-Kunstleve, R.W. C/C++ Users J. 21, 29–36 (2003).

    Google Scholar 

  26. Afonine, P.V., Grosse-Kunstleve, R.W. & Adams, P.D. Acta Crystallogr. D Biol. Crystallogr. 61, 850–855 (2005).

    Article  Google Scholar 

  27. Lunin, V.Y., Afonine, P.V. & Urzhumtsev, A.G. Acta Crystallogr. A 58, 270–282 (2002).

    Article  CAS  Google Scholar 

  28. Pannu, N.S., Murshudov, G.N., Dodson, E.J. & Read, R.J. Acta Crystallogr. D Biol. Crystallogr. 54, 1285–1294 (1998).

    Article  CAS  Google Scholar 

  29. Terwilliger, T.C. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  30. Read, R.J. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  31. Brünger, A.T. Nature 355, 472–475 (1992).

    Article  Google Scholar 

  32. Winn, M.D. et al. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  Google Scholar 

  33. Kleywegt, G.J. Acta Crystallogr. D Biol. Crystallogr. 63, 939–940 (2007).

    Article  CAS  Google Scholar 

  34. Afonine, P.V., Echols, N., Grosse Kunstleve, R.W., Moriarty, N.W. & Adams, P.D. Computat. Crystallogr. Newslett. 2, 99–103 (2011).

    Google Scholar 

  35. Engh, R.A. & Huber, R. Acta Crystallogr. A 47, 392–400 (1991).

    Article  Google Scholar 

  36. Vagin, A.A. et al. Acta Crystallogr. D Biol. Crystallogr. 60, 2184–2195 (2004).

    Article  Google Scholar 

  37. Leaver-Fay, A. et al. Methods Enzymol. 523, 109–143 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Afonine and R. Grosse-Kunstleve for technical advice, J. Richardson for the HiQ54 test structures, and P. Afonine, J. Fraser, R. Read and J. Richardson for comments on the manuscript. Funding was provided by the US National Institutes of Health (grant nos. GM063210 and GM092802). This work was supported in part by the US Department of Energy under contract no. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

F.D., N.E., T.C.T., P.D.A. and D.B. designed the research; F.D., N.E. and J.J.H. performed the experiments; F.D. and N.E. wrote the manuscript, and all authors edited and read the final manuscript; P.D.A. and D.B. supervised the project.

Corresponding authors

Correspondence to Frank DiMaio or Nathaniel Echols.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–5 (PDF 993 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiMaio, F., Echols, N., Headd, J. et al. Improved low-resolution crystallographic refinement with Phenix and Rosetta. Nat Methods 10, 1102–1104 (2013). https://doi.org/10.1038/nmeth.2648

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2648

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing