Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

A reversible gene trap collection empowers haploid genetics in human cells

Abstract

Knockout collections are invaluable tools for studying model organisms such as yeast. However, there are no large-scale knockout collections of human cells. Using gene-trap mutagenesis in near-haploid human cells, we established a platform to generate and isolate individual 'gene-trapped cells' and used it to prepare a collection of human cell lines carrying single gene-trap insertions. In most cases, the insertion can be reversed. This growing library covers 3,396 genes, one-third of the expressed genome, is DNA-barcoded and allows systematic screens for a wide variety of cellular phenotypes. We examined cellular responses to TNF-α, TGF-β, IFN-γ and TNF-related apoptosis-inducing ligand (TRAIL), to illustrate the value of this unique collection of isogenic human cell lines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic and proteomic characterization of KBM7 cells.
Figure 2: A pipeline for the generation of haploid 'gene-trapped' cells.
Figure 3: Gene-trapped mutants are reversible and can resemble gene knockouts.
Figure 4: Molecular portraits of mutant KBM7 cells establish genotype-phenotype relationships.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

NCBI Reference Sequence

References

  1. Subtelny, S. The development of haploid and homozygous diploid frog embryos obtained from transplantations of haploid nuclei. J. Exp. Zool. 139, 263–305 (1958).

    Article  CAS  PubMed  Google Scholar 

  2. Thorne, M.H., Collins, R.K. & Sheldon, B.L. Live haploid-diploid and other unusual mosaic chickens (Gallus domesticus). Cytogenet. Cell Genet. 45, 21–25 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Corley-Smith, G.E., Lim, C.J. & Brandhorst, B.P. Production of androgenetic zebrafish (Danio rerio). Genetics 142, 1265–1276 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yi, M., Hong, N. & Hong, Y. Generation of medaka fish haploid embryonic stem cells. Science 326, 430–433 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Elling, U. et al. Forward and reverse genetics through derivation of haploid mouse embryonic stem cells. Cell Stem Cell 9, 563–574 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Leeb, M. & Wutz, A. Derivation of haploid embryonic stem cells from mouse embryos. Nature 479, 131–134 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kotecki, M., Reddy, P.S. & Cochran, B.H. Isolation and characterization of a near-haploid human cell line. Exp Cell Res 252, 273–280 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Andersson, B.S. et al. Ph-positive chronic myeloid leukemia with near-haploid conversion in vivo and establishment of a continuously growing cell line with similar cytogenetic pattern. Cancer Genet. Cytogenet. 24, 335–343 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Holmfeldt, K., Odic, D., Sullivan, M.B., Middelboe, M. & Riemann, L. Cultivated single-stranded DNA phages that infect marine Bacteroidetes prove difficult to detect with DNA-binding stains. Appl. Environ. Microbiol. 78, 892–894 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carette, J.E. et al. Generation of iPSCs from cultured human malignant cells. Blood 115, 4039–4042 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carette, J.E. et al. Haploid genetic screens in human cells identify host factors used by pathogens. Science 326, 1231–1235 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Carette, J.E. et al. Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nat. Biotechnol. 29, 542–546 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carette, J.E. et al. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477, 340–343 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guimaraes, C.P. et al. Identification of host cell factors required for intoxication through use of modified cholera toxin. J. Cell Biol. 195, 751–764 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Papatheodorou, P. et al. Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT). Proc. Natl. Acad. Sci. USA 108, 16422–16427 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reiling, J.H. et al. A haploid genetic screen identifies the major facilitator domain containing 2A (MFSD2A) transporter as a key mediator in the response to tunicamycin. Proc. Natl. Acad. Sci. USA 108, 11756–11765 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rosmarin, D.M. et al. Attachment of Chlamydia trachomatis L2 to host cells requires sulfation. Proc. Natl. Acad. Sci. USA 109, 10059–10064 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Birsoy, K. et al. MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nat. Genet. 45, 104–108 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Jacobson, L.S. et al. Cathepsin-mediated necrosis controls the adaptive immune response by Th2 (T helper type 2)-associated adjuvants. J. Biol. Chem. 288, 7481–7491 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi, Q. & King, R.W. Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437, 1038–1042 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Lundberg, E. et al. Defining the transcriptome and proteome in three functionally different human cell lines. Mol. Syst. Biol. 6, 450 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lewinski, M.K. et al. Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog. 2, e60 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Scheinecker, C. & Smolen, J.S. Rheumatoid arthritis in 2010: from the gut to the joint. Nat. Rev. Rheumatol. 7, 73–75 (2011).

    Article  PubMed  Google Scholar 

  24. Moustakas, A. & Heldin, C.H. The regulation of TGFbeta signal transduction. Development 136, 3699–3714 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Varfolomeev, E.E. et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9, 267–276 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Kischkel, F.C. et al. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12, 611–620 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Biankin, A.V. et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Manceau, G. et al. Recurrent inactivating mutations of ARID2 in non-small cell lung carcinoma. J. Int. Cancer 132, 2217–2221 (2013).

    Article  CAS  Google Scholar 

  29. Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, M. et al. Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat. Genet. 43, 828–829 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yan, Z. et al. PBAF chromatin-remodeling complex requires a novel specificity subunit, BAF200, to regulate expression of selective interferon-responsive genes. Genes Dev. 19, 1662–1667 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Orlean, P. & Menon, A.K. Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J. Lipid Res. 48, 993–1011 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Skarnes, W.C. et al. A public gene trap resource for mouse functional genomics. Nat. Genet. 36, 543–544 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stanford, W.L., Cohn, J.B. & Cordes, S.P. Gene-trap mutagenesis: past, present and beyond. Nat. Rev. Genet. 2, 756–768 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Fimia, G.M. et al. Ambra1 regulates autophagy and development of the nervous system. Nature 447, 1121–1125 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    PubMed  PubMed Central  Google Scholar 

  39. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wisniewski, J.R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Bennett, K.L. et al. Proteomic analysis of human cataract aqueous humour: Comparison of one-dimensional gel LCMS with two-dimensional LCMS of unlabelled and iTRAQ(R)-labelled specimens. J. Proteomics 74, 151–166 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Colinge, J., Masselot, A., Giron, M., Dessingy, T. & Magnin, J. OLAV: towards high-throughput tandem mass spectrometry data identification. Proteomics 3, 1454–1463 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Geiger, T., Wehner, A., Schaab, C., Cox, J. & Mann, M. Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol. Cell Proteomics 11, M111 014050 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Winter and members of the Brummelkamp, Nijman and Superti-Furga laboratories for discussions and technical assistance, R. Martins for help with the illustrations in Figure 2, O. Majdic (Medical University of Vienna) for providing antibodies, J. Carette for advice on gene trap vector design, and H. Pickersgill for manuscript editing and suggestions. C. Banning was supported by a FemPower grant from Zentrum für Innovation und Technologie (Die Technologieagentur der Stadt Wien), and A.L. and M.L. were supported by a Zentrum für Innovation und Technologie Life Sciences 2011 grant. M.R. was supported by European Molecular Biology Organization fellowship (ALTF1346-2011). K.P. was supported by a European Research Council grant (ERC-2009-AdG-250179-i-FIVE).

Author information

Authors and Affiliations

Authors

Contributions

S.M.B.N., T.R.B. and G.S.-F. conceived the haploid gene-trap mutant collection and provided overall guidance. S.M.B.N. and T.B. analyzed data and, together with G.S.-F. and T.R.B., wrote the paper. S.M.B.N., T.R.B., T.B. and G.C. conceived the gene-trap vector design including barcodes and loxP sites and the clone-mapping pipeline. T.B. and C. Banning supervised the establishment of the mutant collection and performed validation experiments. P.H., A.L., M.L., W.F., S.S. and M.R.T.C. assisted in the establishment of the mutant collection and validation experiments. F.M.P., D.C., N.T., F.S., B.E., P.M.G., V.A.B., T.K., B.G., C. Bock and R.K. generated the samples for DNA and RNA sequencing and SNP arrays, and analyzed the data. R.S., B.E. and G.C. established the clone-mapping bioinformatics pipeline and databases. C.K., M.R., M.S. and F.F.d.l.C. performed clone-validation experiments. K.P., K.L.B. and J.C. generated samples for mass spectrometry and analyzed the data. B.M., J.S. and S.K. performed and analyzed the leukocyte typing experiments. G.C. and G.A. assisted in platform design.

Corresponding authors

Correspondence to Tilmann Bürckstümmer, Thijn R Brummelkamp, Giulio Superti-Furga or Sebastian M B Nijman.

Ethics declarations

Competing interests

G.A., G.C., T.R.B., G.S.-F. and S.M.B.N. are founders and shareholders of Haplogen. T.B., C.Banning, P.H., A.L., M.L., W.F., S.S. and M.R.T.C. are employees of Haplogen.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1, 2, 7, 9 and 11–14 (PDF 7324 kb)

Supplementary Table 3

Variants from exome and whole genome (100-bp paired-end) sequencing. (XLSX 23712 kb)

Supplementary Table 4

Comprehensive proteome profiling. (XLSX 1742 kb)

Supplementary Table 5

mRNA and protein expression. (XLSX 426 kb)

Supplementary Table 6

KEGG pathway analysis of gene trap collection. (XLSX 21 kb)

Supplementary Table 8

KEGG pathway coverage of clone collection. (XLS 53 kb)

Supplementary Table 10

Detailed information concerning all available gene trap clones. (XLS 1802 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bürckstümmer, T., Banning, C., Hainzl, P. et al. A reversible gene trap collection empowers haploid genetics in human cells. Nat Methods 10, 965–971 (2013). https://doi.org/10.1038/nmeth.2609

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2609

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research