Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Recombinant antibodies to histone post-translational modifications

Abstract

Variability in the quality of antibodies to histone post-translational modifications (PTMs) is a widely recognized hindrance in epigenetics research. Here, we produced recombinant antibodies to the trimethylated lysine residues of histone H3 with high specificity and affinity and no lot-to-lot variation. These recombinant antibodies performed well in common epigenetics applications, and enabled us to identify positive and negative correlations among histone PTMs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of commercial and recombinant anti-H3K9me3 antibodies.
Figure 2: Validation and utility of high specificity of recombinant antibodies.

Similar content being viewed by others

References

  1. Strahl, B.D. & Allis, C.D. Nature 403, 41–45 (2000).

    CAS  Google Scholar 

  2. Kouzarides, T. Cell 128, 693–705 (2007).

    Article  CAS  Google Scholar 

  3. Barski, A. et al. Cell 129, 823–837 (2007).

    Article  CAS  Google Scholar 

  4. Rea, S. et al. Nature 406, 593–599 (2000).

    Article  CAS  Google Scholar 

  5. Egelhofer, T.A. et al. Nat. Struct. Mol. Biol. 18, 91–93 (2011).

    Article  CAS  Google Scholar 

  6. Fuchs, S.M. & Strahl, B.D. Epigenomics 3, 247–249 (2011).

    Article  CAS  Google Scholar 

  7. Nishikori, S. et al. J. Mol. Biol. 424, 391–399 (2012).

    Article  CAS  Google Scholar 

  8. Cobaugh, C.W., Almagro, J.C., Pogson, M., Iverson, B. & Georgiou, G. J. Mol. Biol. 378, 622–633 (2008).

    Article  CAS  Google Scholar 

  9. Feldhaus, M.J. et al. Nat. Biotechnol. 21, 163–170 (2003).

    Article  CAS  Google Scholar 

  10. Weiss, G.A., Watanabe, C.K., Zhong, A., Goddard, A. & Sidhu, S.S. Proc. Natl. Acad. Sci. USA 97, 8950–8954 (2000).

    Article  CAS  Google Scholar 

  11. Fuchs, S.M., Krajewski, K., Baker, R.W., Miller, V.L. & Strahl, B.D. Curr. Biol. 21, 53–58 (2011).

    Article  CAS  Google Scholar 

  12. Bulut-Karslioglu, A. et al. Nat. Struct. Mol. Biol. 19, 1023–1030 (2012).

    Article  CAS  Google Scholar 

  13. Blahnik, K.R. et al. PLoS ONE 6, e17121 (2011).

    Article  CAS  Google Scholar 

  14. Bernstein, B.E. et al. Cell 120, 169–181 (2005).

    Article  CAS  Google Scholar 

  15. Tan, M. et al. Cell 146, 1016–1028 (2011).

    Article  CAS  Google Scholar 

  16. Zheng, Y. et al. Proc. Natl. Acad. Sci. USA 109, 13549–13554 (2012).

    Article  CAS  Google Scholar 

  17. Greiner, D., Bonaldi, T., Eskeland, R., Roemer, E. & Imhof, A. Nat. Chem. Biol. 1, 143–145 (2005).

    Article  CAS  Google Scholar 

  18. Quinn, A.M. & Simeonov, A. Curr Chem Genomics 5, 95–105 (2011).

    Article  CAS  Google Scholar 

  19. Haque, A., Andersen, J.N., Salmeen, A., Barford, D. & Tonks, N.K. Cell 147, 185–198 (2011).

    Article  CAS  Google Scholar 

  20. Sidorin, E.V. & Solov'eva, T.F. Biochemistry (Moscow) 76, 295–308 (2011).

    Article  CAS  Google Scholar 

  21. Chao, G. et al. Nat. Protoc. 1, 755–768 (2006).

    Article  CAS  Google Scholar 

  22. Ackerman, M. et al. Biotechnol. Prog. 25, 774–783 (2009).

    Article  CAS  Google Scholar 

  23. Wojcik, J. et al. Nat. Struct. Mol. Biol. 17, 519–527 (2010).

    Article  CAS  Google Scholar 

  24. Fellouse, F.A. et al. J. Mol. Biol. 373, 924–940 (2007).

    Article  CAS  Google Scholar 

  25. Zhang, X. et al. Proc. Natl. Acad. Sci. USA 109, 8534–8539 (2012).

    Article  CAS  Google Scholar 

  26. Lehnertz, B. et al. Curr. Biol. 13, 1192–1200 (2003).

    Article  CAS  Google Scholar 

  27. Ruthenburg, A.J. et al. Cell 145, 692–706 (2011).

    Article  CAS  Google Scholar 

  28. Frietze, S., O'Geen, H., Blahnik, K.R., Jin, V.X. & Farnham, P.J. PLoS ONE 5, e15082 (2010).

    Article  Google Scholar 

  29. O'Geen, H., Echipare, L. & Farnham, P.J. Methods Mol. Biol. 791, 265–286 (2011).

    Article  CAS  Google Scholar 

  30. Negre, N. et al. Nature 471, 527–531 (2011).

    Article  CAS  Google Scholar 

  31. Shechter, D., Dormann, H.L., Allis, C.D. & Hake, S.B. Nat. Protoc. 2, 1445–1457 (2007).

    Article  CAS  Google Scholar 

  32. Garcia, B.A. et al. Nat. Protoc. 2, 933–938 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K.D. Wittrup (Massachusetts Institute of Technology) for an antibody library, J. Lavinder and G. Georgiou for assistance in peptide procurement, J. Ahringer (Cambridge University) for sharing commercial antibodies, M. Gardel and Y. Beckham (University of Chicago) for the NIH 3T3 cell line and advice, A.A. Kossiakoff and M. Lugowski for access to cell culture equipment and microscopes, R. Hoey, N. Bharwani, A. Crofts and R. Ptashkin for technical assistance, S. Nishikori for helpful discussion, and members of the University of Chicago DNA sequencing and flow cytometry core facilities, and of the Institute for Genomics and Systems Biology High-throughput Genome Analysis facility. This work was supported by US National Institutes of Health grants (R21 DA025725 and RC1 DA028779 to S.K., GM085394 to B.D.S., U01 HG004264 to K.P.W. and U01 ES017154 to P.J.F.), and the University of Chicago Comprehensive Cancer Center (to S.K.).

Author information

Authors and Affiliations

Authors

Contributions

T.H. characterized commercial antibodies; T.H., A.K. and S.K. designed phage-display libraries and selection schemes; T.H., J.M.T. and K.M.S. performed selections and biophysical characterization of recombinant antibodies; K.K. and B.D.S. designed and made synthetic peptides; T.H., H.W., M.S., A.J.R., K.P.W., P.J.F. and S.K. designed ChIP experiments; T.H., H.W. and M.S. conducted ChIP experiments and data analysis; T.H., H.L., Y.Z. and S.K. designed IP-MS experiments; T.H. and H.L. performed IP-MS and data analysis: T.H. and S.K. designed HMT assay; T.H. conducted HMT assay. T.H. and S.K. wrote the manuscript. All authors commented on the manuscripts.

Corresponding author

Correspondence to Shohei Koide.

Ethics declarations

Competing interests

T.H., J.M.T., A.K. and S.K. are named as inventors in a provisional patent application (61/839,972) filed by the University of Chicago on the described materials.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Note (PDF 3321 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hattori, T., Taft, J., Swist, K. et al. Recombinant antibodies to histone post-translational modifications. Nat Methods 10, 992–995 (2013). https://doi.org/10.1038/nmeth.2605

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2605

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing