Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Simultaneous, coincident optical trapping and single-molecule fluorescence

Abstract

We constructed a microscope-based instrument capable of simultaneous, spatially coincident optical trapping and single-molecule fluorescence. The capabilities of this apparatus were demonstrated by studying the force-induced strand separation of a dye-labeled, 15-base-pair region of double-stranded DNA (dsDNA), with force applied either parallel ('unzipping' mode) or perpendicular ('shearing' mode) to the long axis of the region. Mechanical transitions corresponding to DNA hybrid rupture occurred simultaneously with discontinuous changes in the fluorescence emission. The rupture force was strongly dependent on the direction of applied force, indicating the existence of distinct unbinding pathways for the two force-loading modes. From the rupture force histograms, we determined the distance to the thermodynamic transition state and the thermal off rates in the absence of load for both processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic optical layout of the instrument (not all components displayed).
Figure 2: Simultaneous traces of force (red) and photon counts (blue) recorded for four experimental geometries (insets).
Figure 3: Cartoon of the experimental geometry for both pulling geometries.
Figure 4: Control trace demonstrating complete overlap of excitation, detection and trapping beams.
Figure 5: Histograms of unbinding and shearing forces with fits to the probability distribution function for breakage force developed by Evans and Ritchie28 (see Supplementary Note online).

Similar content being viewed by others

References

  1. Merkel, R., Nassoy, P., Leung, A., Ritchie, K. & Evans, E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999).

    Article  CAS  Google Scholar 

  2. Liphardt, J., Onoa, B., Smith, S.B., Tinoco, I. Jr. & Bustamante, C. Reversible unfolding of single RNA molecules by mechanical force. Science 292, 733–737 (2001).

    Article  CAS  Google Scholar 

  3. Onoa, B. et al. Identifying kinetic barriers to mechanical unfolding of the T. thermophila ribozyme. Science 299, 1892–1895 (2003).

    Article  CAS  Google Scholar 

  4. Schnitzer, M.J., Visscher, K. & Block, S.M. Force production by single kinesin motors. Nat. Cell Biol. 2, 718–723 (2000).

    Article  CAS  Google Scholar 

  5. Miyata, H., Yasuda, R. & Kinosita, K. Jr. Strength and lifetime of the bond between actin and skeletal muscle α-actinin studied with an optical trapping technique. Biochim. Biophys. Acta 1290, 83–88 (1996).

    Article  Google Scholar 

  6. Kawaguchi, K. & Ishiwata, S. Nucleotide-dependent single- to double-headed binding of kinesin. Science 291, 667–669 (2001).

    Article  CAS  Google Scholar 

  7. Nishizaka, T., Miyata, H., Yoshikawa, H., Ishiwata, S. & Kinosita, K. Jr. Unbinding force of a single motor molecule of muscle measured using optical tweezers. Nature 377, 251–254 (1995).

    Article  CAS  Google Scholar 

  8. Sun, Y.-L., Luo, Z.-P. & An, K.-N. Stretching short biopolymers using optical tweezers. Biochem. Biophys. Res. Commun. 286, 826–830 (2001).

    Article  CAS  Google Scholar 

  9. Wang, M.D., Yin, H., Landick, R., Gelles, J. & Block, S.M. Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997).

    Article  CAS  Google Scholar 

  10. Cui, Y. & Bustamante, C. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc. Natl. Acad. Sci. USA 97, 127–132 (2000).

    Article  CAS  Google Scholar 

  11. Forkey, J.N., Quinlan, M.E. & Goldman, Y.E. Protein structural dynamics by single-molecule fluorescence polarization. Prog. Biophys. Mol. Biol. 74, 1–35 (2000).

    Article  CAS  Google Scholar 

  12. Peterman, E.J., Sosa, H., Goldstein, L.S. & Moerner, W.E. Polarized fluorescence microscopy of individual and many kinesin motors bound to axonemal microtubules. Biophys. J. 81, 2851–2863 (2001).

    Article  CAS  Google Scholar 

  13. Funatsu, T. et al. Imaging and nano-manipulation of single biomolecules. Biophys. Chem. 68, 63–72 (1997).

    Article  CAS  Google Scholar 

  14. Ishijima, A. et al. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell 92, 161–171 (1998).

    Article  CAS  Google Scholar 

  15. Lang, M.J., Fordyce, P.M. & Block, S.M. Combined optical trapping and single-molecule fluorescence. J. Biol. 2, 6 (2003).

    Article  Google Scholar 

  16. Blackman, M.J. et al. Structural and biochemical characterization of a fluorogenic rhodamine-labeled malarial protease substrate. Biochemistry 41, 12244–12252 (2002).

    Article  CAS  Google Scholar 

  17. Rosenfeld, S.S., Xing, J., Jefferson, G.M., Cheung, H.C. & King, P.H. Measuring kinesin's first step. J. Biol. Chem. 277, 36731–36739 (2002).

    Article  CAS  Google Scholar 

  18. Essevaz-Roulet, B., Bockelmann, U. & Heslot, F. Mechanical separation of the complementary strands of DNA. Proc. Natl. Acad. Sci. USA 94, 11935–11940 (1997).

    Article  CAS  Google Scholar 

  19. Rief, M., Clausen-Schaumann, H. & Gaub, H.E. Sequence-dependent mechanics of single DNA molecules. Nat. Struct. Biol. 6, 346–349 (1999).

    Article  CAS  Google Scholar 

  20. Strunz, T., Oroszlan, K., Schafer, R. & Guntherodt, H.J. Dynamic force spectroscopy of single DNA molecules. Proc. Natl. Acad. Sci. USA 96, 11277–11282 (1999).

    Article  CAS  Google Scholar 

  21. Albrecht, C. et al. DNA: a programmable force sensor. Science 301, 367–370 (2003).

    Article  CAS  Google Scholar 

  22. Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997).

    Article  CAS  Google Scholar 

  23. Friedsam, C., Wehle, A.K., Kuhner, F. & Gaub, H.E. Dynamic single-molecule force spectroscopy: bond rupture analysis with variable spacer length. J. Phys. Condens. Mat. 15, S1709–S1723 (2003).

    Article  CAS  Google Scholar 

  24. Cocco, S., Monasson, R. & Marko, J.F. Force and kinetic barriers to initiation of DNA unzipping. Phys. Rev. E 65, 041907–1–041907-23 (2002).

  25. Williams, M.C., Wenner, J.R., Rouzina, I. & Bloomfield, V.A. Effect of pH on the overstretching transition of double-stranded DNA: evidence of force-induced DNA melting. Biophys. J. 80, 874–881 (2001).

    Article  CAS  Google Scholar 

  26. Bustamante, C., Smith, S.B., Liphardt, J. & Smith, D. Single-molecule studies of DNA mechanics. Curr. Opin. Struct. Biol. 10, 279–285 (2000).

    Article  CAS  Google Scholar 

  27. Cocco, S., Marko, J.F., Monasson, R., Sarkar, A. & Yan, J. Force-extension behavior of folding polymers. Eur. Phys. J. E 10, 249–263 (2003).

    Article  CAS  Google Scholar 

  28. Porschke, D. & Eigen, M. Co-operative non-enzymic base recognition. J. Mol. Biol. 62, 361–381 (1971).

    Article  CAS  Google Scholar 

  29. Bouchiat, C. et al. Estimating the persistence length of a worm-like chain molecule from force-extension measurements. Biophys. J. 76, 409–413 (1999).

    Article  CAS  Google Scholar 

  30. Turner, D.H., Sugimoto, N. & Frier, S.M. Thermodynamics and kinetics of base-pairing and of DNA and RNA self-assembly and helix coil transition. Landolt-Bornstein New Ser. VII 1c, 201–227 (1990).

    Google Scholar 

  31. Porschke, D. Elementary steps of base recognition and helix-coil transitions in nucleic acids. J. Biol. Biochem. Biophys. 24, 191–218 (1977).

    Article  CAS  Google Scholar 

  32. Lang, M.J., Asbury, C.L., Shaevitz, J.W. & Block, S.M. An automated two-dimensional optical force clamp for single molecule studies. Biophys. J. 83, 491–501 (2002).

    Article  CAS  Google Scholar 

  33. Tokunaga, M., Kitamura, K., Saito, K., Iwane, A.H. & Yanagida, T. Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem. Biophys. Res. Commun. 235, 47–53 (1997).

    Article  CAS  Google Scholar 

  34. Moerner, W.E. & Fromm, D.P. Methods of single-molecule fluorescence spectroscopy. Rev. Sci. Inst. 74, 3597–3619 (2003).

    Article  CAS  Google Scholar 

  35. Axelrod, D., Burghardt, T.R. & Thompson, N.L. Total internal reflection fluorescence. Annu. Rev. Biophys. Bioeng. 13, 247–268 (1984).

    Article  CAS  Google Scholar 

  36. Axelrod, D. Total internal reflection fluorescence microscopy. Methods Cell. Biol. 30, 245–268 (1989).

    Article  CAS  Google Scholar 

  37. van Dijk, M.A., Kapitein, L.C., van Mameren, J., Schmidt, C.F. & Peterman, E.J.G. Combining optical trapping and single-molecule fluorescence spectroscopy: enhanced photobleaching of fluorophores. J. Phys. Chem. B 108, 6479–6484 (2004).

    Article  CAS  Google Scholar 

  38. Perkins, T.T., Dalal, R.V., Mitsis, P.G. & Block, S.M. Sequence-dependent pausing of single λ exonuclease molecules. Science 301, 1914–1918 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the entire Block lab for helpful discussions and J. Shaevitz for assistance with energy landscape calculations. This work was supported by grants to S.M.B. from the National Institutes of Health. P.M.F. acknowledges support from a National Science Foundation predoctoral fellowship and a Lieberman Award Fellowship; A.M.E. was supported by the Stanford Biophysics Training Grant from the National Institutes of Health; and M.J.L. was supported by a postdoctoral fellowship from the Jane Coffin Childs Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M Block.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, M., Fordyce, P., Engh, A. et al. Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat Methods 1, 133–139 (2004). https://doi.org/10.1038/nmeth714

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth714

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing