MicroRNA microarray

Understanding the function of microRNAs requires the ability to determine their expression level in relation with those of their potential targets. Hammond and colleagues have exploited the oligonucleotide microarray technology to quantify the expression level of large sets of microRNAs. They have optimized a method of RNA fluorescence labeling to overcome limitations imposed by the small size and structure of microRNAs. This procedure, coupled with the design of an oligonucleotide microarray based on known mouse and human microRNA sequences, allows for microRNA expression profiling from small amounts of starting cellular material and rapid assessment of microRNA involvement in a wide range of cellular and developmental processes. **Article p47**

Finding a chromosome’s center

Centromeric regions on higher eukaryotic chromosomes contain genes and functional elements embedded in highly methylated, repetitive DNA. The repetitive content of the centromeric DNA has turned the genetic and physical mapping of centromere regions into a laborious effort, which in the case of *Arabidopsis thaliana* took years to complete. By using a whole-genome fractionation technique, Daphne Preuss and her co-workers significantly reduced the time and effort needed to isolate centromeric DNA in *Arabidopsis*. They have also identified centromere regions in other, less well characterized plant species. This opens the interesting possibility that whole-genome fractionation could be used for higher organisms whose centromeres are as yet unmapped. **Article p67, News and Views p14**

Beginning to see the light: Astrocytes exposed in vivo

Signaling in the central nervous system depends critically on interplay between different cell types such as neuronal and glial cells. There are two prerequisites to visualizing the signaling of a particular cell type *in vivo*: adequate imaging technologies and cell-specific staining. Two-photon microscopy has provided the necessary imaging tool, and now Nimmerjahn et al. have found a fluorescent dye, sulforhodamine 101 (SR101), that specifically stains astrocytes in rodent neocortex without labeling either neuronal cells, microglial cells or oligodendrocytes. SR101 allowed a morphological characterization of astrocytes, showing that they are closely associated with the neocortical microvasculature and may contribute to the regulation of local blood flow. To investigate astrocyte-specific calcium signaling in neocortex, the authors combined SR101 with a cell-permeant fluorescent calcium indicator. The differences they observed in signaling kinetics between neuronal and astroglial cells encourage studies addressing the interdependence of signaling in those cell types. **Article p31**

Protocol of the month

In this brand-new section published in association with Cold Spring Harbor Laboratory Press, Jaiswal and colleagues describe, step by step, a procedure to use quantum dots as labeling agents for fluorescence microscopy. Owing to their enhanced brightness, narrow emission spectra, and resistance to photodamage and metabolic degradation, quantum dots present advantages over organic fluorophores. This protocol shows how to conjugate quantum dots to biomolecules and specifically label proteins in fixed cells or on the surface of live cells. The versatility of the approach allows for simultaneous multicolor imaging of various cellular targets. **Protocol p73**

enhanced or decreased binding to a known partner. Comparison with the TIP47 crystal structure, solved by Hurley’s group while the article was under review, validated the approach as a rapid and accurate way to predict interaction interfaces. **Article p55**

enhanced or decreased binding to a known partner. Comparison with the TIP47 crystal structure, solved by Hurley’s group while the article was under review, validated the approach as a rapid and accurate way to predict interaction interfaces. **Article p55**