Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The Fano resonance in plasmonic nanostructures and metamaterials

Abstract

Since its discovery, the asymmetric Fano resonance has been a characteristic feature of interacting quantum systems. The shape of this resonance is distinctively different from that of conventional symmetric resonance curves. Recently, the Fano resonance has been found in plasmonic nanoparticles, photonic crystals, and electromagnetic metamaterials. The steep dispersion of the Fano resonance profile promises applications in sensors, lasing, switching, and nonlinear and slow-light devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trajectories of the three first optical electric resonances aλ.
Figure 2: Mie scattering against a solid metallic sphere.
Figure 3: Higher-order multipolar Fano resonances in Mie scattering against a solid metallic sphere.
Figure 4: Extinction spectra of non-concentric ring/disk cavity22 and a plasmonic dolmen structure25.
Figure 5: Fano resonances in plasmonic nanoparticle clusters.
Figure 6: Fano resonances in a metallic photonic crystal, consisting of a gold nanowire grating on a single-mode indium tin oxide (ITO) slab waveguide, in which the light is incident normal to the structure.
Figure 7: Fano resonances in metamaterials.
Figure 8: EIT in metamaterials.

Similar content being viewed by others

References

  1. Rabinovitch, M. I. & Trubetskov, D. I. Oscillations and Waves in Linear and Nonlinear Systems (Kluwer Academic Publishers, 1989).

    Google Scholar 

  2. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    CAS  Google Scholar 

  3. Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. Fano resonances in nanoscale structures. Preprint at http://arxiv.org/abs/0902.3014 (2009).

  4. Luo, H. G., Xiang, T., Wang, X. Q., Su, Z. B. & Yu, L. Fano resonance for Anderson impurity systems. Phys. Rev. Lett. 92, 256602 (2004).

    CAS  Google Scholar 

  5. Johnson, A. C., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Coulomb-modified Fano resonance in a one-lead quantum dot. Phys. Rev. Lett. 93, 106803 (2004).

    CAS  Google Scholar 

  6. Kobayashi, K., Aikawa, H., Sano, A., Katsumoto, S. & Iye, Y. Fano resonance in a quantum wire with a side-coupled quantum dot. Phys. Rev. B 70, 035319 (2004).

    Google Scholar 

  7. Hessel, A. & Oliner, A. A. A new theory of Wood's anomalies on optical gratings. Appl. Opt. 4, 1275–1297 (1965).

    Google Scholar 

  8. Sarrazin, M., Vigneron, J. P. & Vigoureux, J. M. Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes. Phys. Rev. B 67, 085415 (2003).

    Google Scholar 

  9. Lee, H-T. & Poon, A. W. Fano resonances in prism-coupled square micropillars. Opt. Lett. 29, 5–7 (2004).

    Google Scholar 

  10. Rybin, M. V. et al. Fano resonance between Mie and Bragg scattering in photonic crystals. Phys. Rev. Lett. 103, 023901 (2009).

    CAS  Google Scholar 

  11. Fan, S. H. Sharp asymmetric line shapes in side-coupled waveguide-cavity systems. Appl. Phys. Lett. 80, 908–910 (2002).

    CAS  Google Scholar 

  12. Fan, S. H. & Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002).

    Google Scholar 

  13. Genet, C., van Exter, M. P. & Woerdman, J. P. Fano-type interpretation of red shifts and red tails in hole array transmission spectra. Opt. Commun. 225, 331–336 (2003).

    CAS  Google Scholar 

  14. Fan, S. H., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20, 569–572 (2003).

    Google Scholar 

  15. Christ, A., Tikhodeev, S. G., Gippius, N. A., Kuhl, J. & Giessen, H. Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys. Rev. Lett. 91, 183901 (2003).

    CAS  Google Scholar 

  16. Christ, A. et al. Optical properties of planar metallic photonic crystal structures: Experiment and theory. Phys. Rev. B 70, 125113 (2004).

    Google Scholar 

  17. Sarrazin, M. & Vigneron, J-P. Bounded modes to the rescue of optical transmission. Europhys. News 38, 27–31 (2007).

    CAS  Google Scholar 

  18. Catrysse, P. B. & Fan, S. H. Near-complete transmission through subwavelength hole arrays in phonon-polaritonic thin films. Phys. Rev. B 75, 075422 (2007).

    Google Scholar 

  19. Ruan, Z. & Fan, S. Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle. J. Phys. Chem. C 114, 7324–7329 (2009).

    Google Scholar 

  20. Tribelsky, M. I., Flach, S., Miroshnichenko, A. E., Gorbach, A. V. & Kivshar, Y. S. Light scattering by a finite obstacle and Fano resonances. Phys. Rev. Lett. 100, 043903 (2008).

    Google Scholar 

  21. Miroshnichenko, A. E. et al. Fano resonances: A discovery that was not made 100 years ago. Opt. Phot. News 19, 48 (2008).

    Google Scholar 

  22. Hao, F. et al. Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. 8, 3983–3988 (2008).

    CAS  Google Scholar 

  23. Hao, F., Nordlander, P., Sonnefraud, Y., Van Dorpe, P. & Maier, S. A. Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing. ACS Nano 3, 643–652 (2009).

    CAS  Google Scholar 

  24. Mirin, N. A., Bao, K. & Nordlander, P. Fano resonances in plasmonic nanoparticle aggregates. J. Phys. Chem. A 113, 4028–4034 (2009).

    CAS  Google Scholar 

  25. Verellen, N. et al. Fano resonances in individual coherent plasmonic nanocavities. Nano Lett. 9, 1663–1667 (2009).

    CAS  Google Scholar 

  26. Maier, S. A. The benefits of darkness. Nature Mater. 8, 699–700 (2009).

    CAS  Google Scholar 

  27. Sonnefraud, Y. et al. Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 4, 1664–1670 (2010).

    CAS  Google Scholar 

  28. Liu, N. et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Mater. 8, 758–762 (2009).

    CAS  Google Scholar 

  29. Shvets, G. & Urzhumov, Y. A. Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances. Phys. Rev. Lett. 93, 243902 (2004).

    Google Scholar 

  30. Fedotov, V. A., Rose, M., Prosvirnin, S. L., Papasimakis, N. & Zheludev, N. I. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 99, 147401 (2007).

    CAS  Google Scholar 

  31. Christ, A. et al. Controlling the Fano interference in a plasmonic lattice. Phys. Rev. B 76, 201405 (2007).

    Google Scholar 

  32. Auguié, B. & Barnes, W. L. Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 101, 143902 (2008).

    Google Scholar 

  33. Bachelier, G. et al. Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles. Phys. Rev. Lett. 101, 197401 (2008).

    CAS  Google Scholar 

  34. Le, F. et al. Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano 2, 707–718 (2008).

    CAS  Google Scholar 

  35. Yan, J-Y., Zhang, W., Duan, S., Zhao, X-G. & Govorov, A. O. Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects. Phys. Rev. B 77, 165301 (2008).

    Google Scholar 

  36. Kivshar, Y. S. Nonlinear optics: The next decade. Opt. Express 16, 22126–22128 (2008).

    Google Scholar 

  37. Ekinci, Y. et al. Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs. Opt. Express 16, 13287–13295 (2008).

    CAS  Google Scholar 

  38. Neubrech, F. et al. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys. Rev. Lett. 101, 157403 (2008).

    Google Scholar 

  39. Nygaard, N., Piil, R. & Mølmer, K. Feshbach molecules in a one-dimensional optical lattice. Phys. Rev. A 77, 021601 (2008).

    Google Scholar 

  40. Pistolesi, F., Blanter, Y. M. & Martin, I. Self-consistent theory of molecular switching. Phys. Rev. B 78, 085127 (2008).

    Google Scholar 

  41. Cho, D. J., Wang, F., Zhang, X. & Shen, Y. R. Contribution of the electric quadrupole resonance in optical metamaterials. Phys. Rev. B 78, 121101 (2008).

    Google Scholar 

  42. Christ, A., Martin, O. J. F., Ekinci, Y., Gippius, N. A. & Tikhodeev, S. G. Symmetry breaking in a plasmonic metamaterial at optical wavelength. Nano Lett. 8, 2171–2175 (2008).

    CAS  Google Scholar 

  43. Petschulat, J. et al. Multipole approach to metamaterials. Phys. Rev. A 78, 043811 (2008).

    Google Scholar 

  44. Naether, U., Rivas, D. E., Larenas, M. A., Molina, M. I. & Vicencio, R. A. Fano resonances in waveguide arrays with saturable nonlinearity. Opt. Lett. 34, 2721–2723 (2009).

    Google Scholar 

  45. Chen, C-Y., Un, I-W., Tai, N-H. & Yen, T-J. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance. Opt. Express 17, 15372–15380 (2009).

    CAS  Google Scholar 

  46. Cubukcu, E., Zhang, S., Park, Y. S., Bartal, G. & Zhang, X. Split ring resonator sensors for infrared detection of single molecular monolayers. Appl. Phys. Lett. 95, 043113 (2009).

    Google Scholar 

  47. Kanté, B., de Lustrac, A. & Lourtioz, J. M. In-plane coupling and field enhancement in infrared metamaterial surfaces. Phys. Rev. B 80, 035108 (2009).

    Google Scholar 

  48. Miroshnichenko, A. E. et al. Dynamics and instability of nonlinear Fano resonances in photonic crystals. Phys. Rev. A 79, 013809 (2009).

    Google Scholar 

  49. Liu, N. et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett. 10, 1103–1107 (2010).

    CAS  Google Scholar 

  50. Miroshnichenko, A. E. Non-rayleigh limit of the lorenz-Mie solution and suppression of scattering by spheres of negative refractive index. Phys. Rev. A 80, 013808 (2009).

    Google Scholar 

  51. Miroshnichenko, A. E. Instabilities and quasi-localized states in nonlinear Fano-like systems. Phys. Lett. A 373, 3586–3590 (2009).

    CAS  Google Scholar 

  52. Miroshnichenko, A. E. Nonlinear Fano-Feshbach resonances. Phys. Rev. E 79, 026611 (2009).

    Google Scholar 

  53. Pakizeh, T., Langhammer, C., Zoric, I., Apell, P. & Käll, M. Intrinsic Fano interference of localized plasmons in Pd nanoparticles. Nano Lett. 9, 882–886 (2009).

    CAS  Google Scholar 

  54. Pakizeh, T. & Käll, M. Unidirectional ultracompact optical nanoantennas. Nano Lett. 9, 2343–2349 (2009).

    CAS  Google Scholar 

  55. Parsons, J. et al. Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays. Phys. Rev. B 79, 073412 (2009).

    Google Scholar 

  56. Li, Z-P., Shegai, T., Haran, G. & Xu, H-X. Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission. ACS Nano 3, 637–642 (2009).

    CAS  Google Scholar 

  57. Papasimakis, N. & Zheludev, N. I. Metamaterial-induced transparency: Sharp Fano resonances and slow light. Opt. Phot. News 20, 22–27 (2009).

    CAS  Google Scholar 

  58. Urzhumov, Y. A., Korobkin, D., Neuner, B., Zorman, C. & Shvets, G. Optical properties of sub-wavelength hole arrays in SiC membranes. J. Opt. A 9, S322–S333 (2007).

    CAS  Google Scholar 

  59. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    CAS  Google Scholar 

  60. Garcia-Vidal, F. J., Martin-Moreno, L., Ebbesen, T. W. & Kuipers, L. Light passing through subwavelength apertures. Rev. Mod. Phys. 82, 729–787 (2010).

    Google Scholar 

  61. Stockman, M. I., Faleev, S. V. & Bergman, D. J. Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics? Phys. Rev. Lett. 87, 167401 (2001).

    CAS  Google Scholar 

  62. Born, M. & Wolf, E. Principles of Optics 7th edn (Cambridge Univ. Press, 1999).

    Google Scholar 

  63. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 1998).

    Google Scholar 

  64. Tribelsky, M. I. & Luk'yanchuk, B. S. Anomalous light scattering by small particles. Phys. Rev. Lett. 97, 263902 (2006).

    Google Scholar 

  65. Luk'yanchuk, B. S. et al. Peculiarities of light scattering by nanoparticles and nanowires near plasmon resonance frequencies in weakly dissipating materials. J. Opt. A 9, S294–S300 (2007).

    CAS  Google Scholar 

  66. Bystrov, A. M. & Gildenburg, V. B. Dipole resonances of an ionized cluster. J. Exp. Theor. Phys. 100, 428–439 (2005).

    CAS  Google Scholar 

  67. Wang, Z. B., Luk'yanchuk, B. S., Hong, M. H., Lin, Y. & Chong, T. C. Energy flow around a small particle investigated by classical Mie theory. Phys. Rev. B 70, 035418 (2004).

    Google Scholar 

  68. Luk'yanchuk, B. S. et al. Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies. Appl. Phys. A 89, 259–264 (2007).

    CAS  Google Scholar 

  69. Luk'yanchuk, B. S. & Qiu, C-W. Enhanced scattering efficiencies in spherical particles with weakly dissipating anisotropic materials. Appl. Phys. A 92, 773–776 (2008).

    CAS  Google Scholar 

  70. Brown, L. V., Sobhani, H., Lassiter, J. B., Nordlander, P. & Halas, N. J. Heterodimers: Plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4, 819–832 (2010).

    CAS  Google Scholar 

  71. Hu, Y., Noelck, S. J. & Drezek, R. A. Symmetry breaking in gold-silica-gold multilayer nanoshells. ACS Nano 4, 1521–1528 (2010).

    CAS  Google Scholar 

  72. Zhang, S., Genov, D. A., Wang, Y., Liu, M. & Zhang, X. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008).

    Google Scholar 

  73. Fan, J. A. et al. Self-assembled plasmonic nanoparticle clusters. Science 328, 1135–1138 (2010).

    CAS  Google Scholar 

  74. Hentschel, M. et al. Transition from isolated to collective modes in plasmonic oligomers. Nano Lett. 10, 2721–2726 (2010).

    CAS  Google Scholar 

  75. Bao, K., Mirin, N. & Nordlander, P. Fano resonances in planar silver nanosphere clusters. Appl. Phys. A 100, 333–339 (2010).

    CAS  Google Scholar 

  76. Zentgraf, T., Christ, A., Kuhl, J. & Giessen, H. Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals. Phys. Rev. Lett. 93, 243901 (2004).

    CAS  Google Scholar 

  77. Klein, M. W., Tritschler, T., Wegener, M. & Linden, S. Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs. Phys. Rev. B 72, 115113 (2005).

    Google Scholar 

  78. Nau, D. et al. Correlation effects in disordered metallic photonic crystal slabs. Phys. Rev. Lett. 98, 133902 (2007).

    CAS  Google Scholar 

  79. Plum, E. et al. Metamaterials: Optical activity without chirality. Phys. Rev. Lett. 102, 113902 (2009).

    CAS  Google Scholar 

  80. Papasimakis, N. et al. Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency. Appl. Phys. Lett. 94, 211902 (2009).

    Google Scholar 

  81. Fedotov, V. A. et al. Temperature control of Fano resonances and transmission in superconducting metamaterials. Opt. Express 18, 9015–9019 (2010).

    CAS  Google Scholar 

  82. Fedotov, V. A. et al. Spectral collapse in ensembles of meta-molecules. Phys. Rev. Lett. 104, 223901 (2010).

    CAS  Google Scholar 

  83. Zheludev, N. I., Prosvirnin, S. L., Papasimakis, N. & Fedotov, V. A. Lasing spaser. Nature Photon. 2, 351–354 (2008).

    CAS  Google Scholar 

  84. Debus, C. & Bolivar, P. H. Terahertz biosensors based on double split ring arrays. Proc. SPIE 6987, 6987OU (2008).

    Google Scholar 

  85. Lahiri, B., Khokhar, A. Z., De La Rue, R. M., McMeekin, S. G. & Johnson, N. P. Asymmetric split ring resonators for optical sensing of organic materials. Opt. Express 17, 1107–1115 (2009).

    CAS  Google Scholar 

  86. Papasimakis, N. et al. Graphene in a photonic metamaterial. Opt. Express 18, 8353–8359 (2010).

    CAS  Google Scholar 

  87. Dicken, M. J. et al. Frequency tunable near-infrared metamaterials based on VO2 phase transition. Opt. Express 17, 18330–18339 (2009).

    CAS  Google Scholar 

  88. Sámson, Z. L. et al. Metamaterial electro-optic switch of nanoscale thickness. Appl. Phys. Lett. 96, 143105 (2010).

    Google Scholar 

  89. Nikolaenko, A. E. et al. Carbon nanotubes in a photonic metamaterial. Phys. Rev. Lett. 104, 153902 (2010).

    Google Scholar 

  90. Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003).

    CAS  Google Scholar 

  91. Kawata, S., Ono, A. & Verma, P. Subwavelength colour imaging with a metallic nanolens. Nature Photon. 2, 438–442 (2008).

    CAS  Google Scholar 

  92. Liu, M., Lee, T-W., Gray, S. K., Guyot-Sionnest, P. & Pelton, M. Excitation of dark plasmons in metal nanoparticles by a localized emitter. Phys. Rev. Lett. 102, 107401 (2009).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge valuable technical assistance from Dr Nikolay A. Mirin, J. Britt Lassiter and Shaunak Mukherjee. The research presented in this paper is supported in part by the Agency for Science, Technology and Research (A*STAR) for financial support (THz S&T Inter-RI Program, Project 082 141 0039, SERC Metamaterials Program on Superlens, grant no. 092 154 0099 and A*STAR TSRP Program, grant no. 102 152 0018) (B.L. and C.T.C.); the UK Engineering and Physical Sciences Research Council and the Royal Society (S.A.M. and N.I.Z.); the US Department of Defense NSSEFF (N.J.H.), the Robert A. Welch Foundation C-1220 and C-1222, and the Center for Advanced Solar Photophysics, a Energy Frontier Research Center funded by the US Department of Energy (N.J.H. and P.N.); and the Deutsche Forschungsgemeinschaft of the Federal Republic of Germany (FOR 557, FOR 730, SPP1391) and the Bundesministerium für Bildung und Forschung (H.G.) for support.

Author information

Authors and Affiliations

Authors

Contributions

B.L. and C.T.C. initiated the section The Fano resonance'. N.I.Z. initiated the section 'Fano resonances in metamaterials'. S.A.M., N.J.H. and P.N. initiated the section 'Fano resonances in plasmonic nanostructures'. H.G. initiated the sections 'Fano resonances in metallic photonic crystals' and 'Plasmon-induced transparency in metamaterials'. All authors contributed equally to the 'Applications' section and to editing. B.L., P.N. and N.J.H. carried out the main final edits.

Corresponding author

Correspondence to Peter Nordlander.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luk'yanchuk, B., Zheludev, N., Maier, S. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Mater 9, 707–715 (2010). https://doi.org/10.1038/nmat2810

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2810

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing