Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High magnetic-field scales and critical currents in SmFeAs(O, F) crystals

Abstract

With the discovery of new superconducting materials, such as the iron pnictides1, exploring their potential for applications is one of the foremost tasks. Even if the critical temperature Tc is high, intrinsic electronic properties might render applications difficult, particularly if extreme electronic anisotropy prevents effective pinning of vortices and thus severely limits the critical current density, a problem well known for cuprates2,3,4,5. Although many questions concerning microscopic electronic properties of the iron pnictides have been successfully addressed5 and estimates point to a very high upper critical field6,7,8,9, their application potential is less clear. Thus, we focus here on the critical currents, their anisotropy and the onset of electrical dissipation in high magnetic fields up to 65 T. Our detailed study of the transport properties of SmFeAsO0.7F0.25 single crystals reveals a promising combination of high (>2×106 A cm−2) and nearly isotropic critical current densities along all crystal directions. This favourable intragrain current transport in SmFeAs(O, F), which shows the highest Tc of 54 K at ambient pressure10,11,12, is a crucial requirement for possible applications. Essential in these experiments are four-probe measurements on focused-ion-beam-cut single crystals with a sub-square-micrometre cross-section, with current along and perpendicular to the crystallographic c axis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Four-probe resistance bars for simultaneous c-axis and a b-plane resistivity measurements carved out of a SmFeAsO0.7F0.25 single crystal using the FIB.
Figure 2: Normal-state resistivity ratio of SmFeAsO0.7F0.25.
Figure 3: Magnetoresistance of SmFeAsO0.7F0.25 in pulsed fields up to 65 T at various temperatures for fields and currents along and perpendicular to the c axis.
Figure 4: Critical current density of SmFeAsO0.7F0.25.
Figure 5: Region for potenital application of SmFeAs(O, F).

Similar content being viewed by others

References

  1. Kamihara, Y. et al. Iron-based layered superconductor: La(O1−xFx)FeAs (x=0.05–0.12) with Tc=26 K. J. Am. Chem. Soc. 11, 3296–3297 (2008).

    Article  Google Scholar 

  2. Dimos, D., Chaudhari, P. & Mannhart, J. Superconducting transport properties of grain boundaries in YBa2Cu3O7 bicrystals. Phys. Rev. B 41, 4038–4049 (1990).

    Article  CAS  Google Scholar 

  3. Heinig, N. F., Redwing, R. D., Nordman, J. E. & Larbalestier, D. C. Strong to weak coupling transition in low misorientation angle thin film YBa2Cu3O7−x bicrystals. Phys. Rev. B 60, 1409–1417 (1999).

    Article  CAS  Google Scholar 

  4. Hilgenkamp, H. & Mannhart, J. Grain boundaries in high-Tc superconductors. Rev. Mod. Phys. 74, 485–549 (2002).

    Article  CAS  Google Scholar 

  5. Palstra, T. T. M., Batlogg, B., van Dover, R. B., Schneemeyer, L. F. & Waszczak, J. V. Dissipative flux-motion in high temperature superconductors. Phys. Rev. B 41, 6621–6632 (1990).

    Article  CAS  Google Scholar 

  6. Senatore, C. et al. Upper critical fields well above 100 T for the superconductor SmFeAsO0.85F0.15 with Tc=46 K. Phys. Rev. B 78, 054514 (2008).

    Article  Google Scholar 

  7. Hunte, F. et al. Two-band superconductivity in LaFeAsO0.89F0.11 at very high magnetic fields. Nature 453, 903–905 (2008).

    Article  CAS  Google Scholar 

  8. Jaroszynski, J. et al. Comparative high-field magnetotransport of the oxypnictide superconductors RFeAsO1−xFx (R=La, Nd) and SmFeAsO1−δ . Phys. Rev. B 78, 064511 (2008).

    Article  Google Scholar 

  9. Lee, H-S. et al. Effects of two gaps and paramagnetic pair-breaking effects on the upper critical field of SmFeAsO0.85 and SmFeAsO0.8F0.2 single crystals. Phys. Rev. B 80, 144512 (2009).

    Article  Google Scholar 

  10. Liu, R. H. et al. Anomalous transport properties and phase diagram of the FeAs-based SmFeAsO1−xFx superconductors. Phys. Rev. Lett. 101, 087001 (2008).

    Article  CAS  Google Scholar 

  11. Chen, X. H. et al. Superconductivity at 43 K in SmFeAsO1−xFx . Nature 453, 761–762 (2008).

    Article  CAS  Google Scholar 

  12. Ren, Z. A. et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1−xFx] FeAs. Chin. Phys. Lett. 25, 2215–2216 (2008).

    Article  CAS  Google Scholar 

  13. Zhigadlo, N. D. et al. Single crystals of superconducting SmFeAsO1−xFy grown at high pressure. J. Phys. Condens. Matter 20, 342202 (2008).

    Article  Google Scholar 

  14. Karpinski, J. et al. Single crystals of LnFeAsO1−xFx (Ln=La, Pr, Nd, Sm, Gd) and Ba1−xRbxFe2As2: Growth, structure and superconducting properties. Physica C 469, 370–380 (2009).

    Article  CAS  Google Scholar 

  15. Jaroszynski, J. et al. Upper critical fields and thermally-activated transport of NdFeAsO0.7F0.3 single crystal. Phys. Rev. B 78, 174523 (2008).

    Article  Google Scholar 

  16. Yang, J. et al. The role of F-doping and oxygen vacancies on the superconductivity in SmFeAsO compounds. Supercond. Sci. Technol. 22, 025004 (2009).

    Article  Google Scholar 

  17. Ando, Y. et al. Metallic in-plane and divergent out-of-plane resistivity of a high-Tc cuprate in the zero-temperature limit. Phys. Rev. Lett. 77, 2065–2068 (1996).

    Article  CAS  Google Scholar 

  18. Tanatar, M. A. et al. Anisotropy of the iron pnictide superconductor Ba(Fe1−xCox)2As2 (x=0.074, Tc=23 K). Phys. Rev. B 79, 094507 (2009).

    Article  Google Scholar 

  19. Terashima, T. et al. Resistivity and upper critical field in KFe2As2 single crystals. J. Phys. Soc. Jpn 78, 063702 (2009).

    Article  Google Scholar 

  20. Tozer, S. W. et al. Measurement of anisotropic resistivity and Hall constant for single-crystal YBa2Cu3O7−x . Phys. Rev. Lett. 59, 1768–1771 (1987).

    Article  CAS  Google Scholar 

  21. Ono, S. & Ando, Y. Evolution of the resistivity anisotropy in Bi2Sr2−xLaxCuO6+δ single crystals for a wide range of hole doping. Phys. Rev. B 67, 104512 (2003).

    Article  Google Scholar 

  22. Ando, Y. et al. Resistive upper critical fields and irreversibility lines of optimally doped high-Tc cuprates. Phys. Rev. B 60, 12475–12479 (1999).

    Article  CAS  Google Scholar 

  23. Lyard, L. et al. Anisotropy of the upper critical field and critical current in single crystal MgB2 . Phys. Rev. B 66, 180502 (2002).

    Article  Google Scholar 

  24. Bean, C. P. Magnetization of hard superconductors. Phys. Rev. Lett. 8, 250–253 (1962).

    Article  Google Scholar 

  25. Gyorgy, E. M., van Dover, R. B., Jackson, K. A., Schneemeyer, L. F. & Waszczak, J. V. Anisotropic critical currents in Ba2YCu3O7 analyzed using an extended Bean model. Appl. Phys. Lett. 55, 283–285 (1989).

    Article  CAS  Google Scholar 

  26. Prozorov, R. et al. Vortex phase diagram of Ba(Fe0.93Co0.07)2As2 single crystals. Phys. Rev. B 78, 224506 (2008).

    Article  Google Scholar 

  27. Bukowski, Z. et al. Superconductivity at 23 K and low anisotropy in Rb-substituted BaFe2As2 single crystals. Phys. Rev. B 79, 104521 (2009).

    Article  Google Scholar 

  28. Larbalestier, D., Gurevich, A., Feldmann, D. M. & Polyanskii, A. High-Tc superconducting materials for electric power applications. Nature 414, 368–377 (2001) insight review.

    Article  CAS  Google Scholar 

  29. Cai, X. Y. et al. Static and dynamic mechanisms of the anomalous field dependence of magnetization in Bi–Sr–Ca–Cu–O and Bi–Pb–Sr–Ca–Cu–O single crystals. Phys. Rev. B 50, 16774–16777 (1994).

    Article  CAS  Google Scholar 

  30. Dew-Hughes, D. Flux pinning mechanisms in type II superconductors. Phil. Mag. 30, 293–305 (1974).

    Article  CAS  Google Scholar 

  31. Koblischka, M. R., van Dalen, A. J. J., Higuchi, T., Yoo, S. I. & Murakami, M. Analysis of pinning in NdBa2Cu3O7−d superconductors. Phys. Rev. B 58, 2863–2867 (1998).

    Article  CAS  Google Scholar 

  32. Rogacki, K., Dabrowski, B. & Chmaissem, O. Increase of critical currents and peak effect in Mo-substituted YBa2Cu3O7 . Phys. Rev. B 73, 224518 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Katrych for carrying out X-ray analyses, and P. Gasser and K. Kunze for FIB assistance supporting this study. Work at NHMFL-LANL is carried out under the auspices of the National Science Foundation, Department of Energy and State of Florida. Electron Microscopy and FIB work was carried out at the Electron Microscopy ETH Zurich (EMEZ). This work has been supported by the Swiss National Science Foundation NCCR Materials with Novel Electronic Properties (MaNEP) and by the Polish Ministry of Science and Higher Education under the research project No. N N202 4132 33.

Author information

Authors and Affiliations

Authors

Contributions

P.J.W.M. and B.B. designed the experiment and wrote the paper. P.J.W.M. carried out the direct transport critical current experiments; the pulsed field magnetotransport was measured by P.J.W.M. and F.B. R.P., K.R. and B.B. measured magnetization and evaluated the magnetic critical currents jcmag. K.R. carried out the pinning analysis. N.D.Z. and J.K. grew the crystals.

Corresponding author

Correspondence to Philip J. W. Moll.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 613 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moll, P., Puzniak, R., Balakirev, F. et al. High magnetic-field scales and critical currents in SmFeAs(O, F) crystals. Nature Mater 9, 628–633 (2010). https://doi.org/10.1038/nmat2795

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2795

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing