Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multimaterial piezoelectric fibres

Abstract

Fibre materials span a broad range of applications ranging from simple textile yarns to complex modern fibre-optic communication systems. Throughout their history, a key premise has remained essentially unchanged: fibres are static devices, incapable of controllably changing their properties over a wide range of frequencies. A number of approaches to realizing time-dependent variations in fibres have emerged, including refractive index modulation1,2,3,4, nonlinear optical mechanisms in silica glass fibres5,6,7,8 and electroactively modulated polymer fibres9. These approaches have been limited primarily because of the inert nature of traditional glassy fibre materials. Here we report the composition of a phase internal to a composite fibre structure that is simultaneously crystalline and non-centrosymmetric. A ferroelectric polymer layer of 30 μm thickness is spatially confined and electrically contacted by internal viscous electrodes and encapsulated in an insulating polymer cladding hundreds of micrometres in diameter. The structure is thermally drawn in its entirety from a macroscopic preform, yielding tens of metres of piezoelectric fibre. The fibres show a piezoelectric response and acoustic transduction from kilohertz to megahertz frequencies. A single-fibre electrically driven device containing a high-quality-factor Fabry–Perot optical resonator and a piezoelectric transducer is fabricated and measured.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of piezoelectric fibres.
Figure 2: Acoustic emission from piezoelectric fibres.
Figure 3: Acoustic transmission characterization.
Figure 4: Integrated piezoelectric-modulated optical fibre.

Similar content being viewed by others

References

  1. Benoit, G., Hart, S. D., Temelkuran, B., Joannopoulos, J. D. & Fink, Y. Static and dynamic properties of optical microcavities in photonic bandgap yarns. Adv. Mater. 15, 2053–2056 (2003).

    Article  CAS  Google Scholar 

  2. Larsen, T. T., Bjarklev, A., Hermann, D. S. & Broeng, J. Optical devices based on liquid crystal photonic bandgap fibres. Opt. Express 11, 2589–2596 (2003).

    Article  CAS  Google Scholar 

  3. Benoit, G., Kuriki, K., Viens, J. F., Joannopoulos, J. D. & Fink, Y. Dynamic all-optical tuning of transverse resonant cavity modes in photonic bandgap fibers. Opt. Lett. 30, 1620–1622 (2005).

    Article  Google Scholar 

  4. Kerbage, C., Hale, A., Yablon, A., Windeler, R. S. & Eggleton, B. J. Integrated all-fiber variable attenuator based on hybrid microstructure fiber. Appl. Phys. Lett. 79, 3191–3193 (2001).

    Article  CAS  Google Scholar 

  5. Li, L., Wylangowski, G., Payne, D. N. & Birch, R. D. Broad-band metal glass single-mode fiber polarizers. Electron. Lett. 22, 1020–1022 (1986).

    Article  Google Scholar 

  6. Bergot, M. V. et al. Generation of permanent optically induced 2nd-order nonlinearities in optical fibers by poling. Opt. Lett. 13, 592–594 (1988).

    Article  CAS  Google Scholar 

  7. Townsend, P. D., Poustie, A. J., Hardman, P. J. & Blow, K. J. Measurement of the refractive-index modulation generated by electrostriction-induced acoustic waves in optical fibers. Opt. Lett. 21, 333–335 (1996).

    Article  CAS  Google Scholar 

  8. Fokine, M. et al. Integrated fiber Mach-Zehnder interferometer for electro-optic switching. Opt. Lett. 27, 1643–1645 (2002).

    Article  CAS  Google Scholar 

  9. Carpi, F. & De Rossi, D. Electroactive polymer-based devices for e-textiles in biomedicine. IEEE Trans. Inf. Technol. Biomed. 9, 295–318 (2005).

    Article  Google Scholar 

  10. Curie, J. & Curie, P. Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées. C. R. Acad. Sci. Paris 91, 294–295 (1880).

    Google Scholar 

  11. Arnau, A. Piezoelectric Transducers and Applications (Springer, 2008).

    Google Scholar 

  12. Abouraddy, A. F. et al. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nature Mater. 6, 336–347 (2007).

    Article  CAS  Google Scholar 

  13. Kawai, H. Piezoelectricity of poly (vinylidene fluoride). Jpn. J. Appl. Phys. 8, 975–976 (1969).

    Article  CAS  Google Scholar 

  14. Lovinger, A. J. Ferroelectric polymers. Science 220, 1115–1121 (1983).

    Article  CAS  Google Scholar 

  15. Lando, J. B., Olf, H. G. & Peterlin, A. Nuclear magnetic resonance and X-ray determination of structure of poly(vinylidene fluoride). J. Polym. Sci. A 4, 941–951 (1966).

    Article  CAS  Google Scholar 

  16. Matsushige, K., Nagata, K., Imada, S. & Takemura, T. The ii-i crystal transformation of poly(vinylidene fluoride) under tensile and compressional stresses. Polymer 21, 1391–1397 (1980).

    Article  CAS  Google Scholar 

  17. Deng, D. S. et al. In-fiber semiconductor filament arrays. Nano Lett. 8, 4265–4269 (2008).

    Article  CAS  Google Scholar 

  18. Hart, S. D. Multilayer Composite Photonic Bandgap Fibers (Massachusetts Institute of Technology, 2004).

    Google Scholar 

  19. Furukawa, T. Ferroelectric properties of vinylidene fluoride copolymers. Phase Transit. 18, 143–211 (1989).

    Article  CAS  Google Scholar 

  20. Lando, J. B. & Doll, W. W. The polymorphism of poly(vinylidene fluoride). J. Macromol. Sci.-Phys. B2, 205–218 (1968).

    Article  Google Scholar 

  21. Yagi, T., Tatemoto, M. & Sako, J. Transition behavior and dielectric-properties in trifluoroethylene and vinylidene fluoride co-polymers. Polym. J. 12, 209–223 (1980).

    Article  CAS  Google Scholar 

  22. Koga, K. & Ohigashi, H. Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers. J. Appl. Phys. 59, 2142–2150 (1986).

    Article  CAS  Google Scholar 

  23. Kimura, K. & Ohigashi, H. Ferroelectric properties of poly(vinylidenefluoride-trifluoroethylene) copolymer thin films. Appl. Phys. Lett. 43, 834–836 (1983).

    Article  CAS  Google Scholar 

  24. Eberhardt, F. J. & Andrews, F. A. Laser heterodyne system for measurement and analysis of vibration. J. Acoust. Soc. Am. 48, 603–609 (1970).

    Article  Google Scholar 

  25. Huber, R., Wojtkowski, M., Taira, K., Fujimoto, J. G. & Hsu, K. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: Design and scaling principles. Opt. Express 13, 3513–3528 (2005).

    Article  CAS  Google Scholar 

  26. Morrison, R. Grounding and Shielding: Circuits and Interference (IEEE Press, 2007).

    Book  Google Scholar 

  27. Pinet, E. Medical applications: Saving lives. Nature Photon. 2, 150–152 (2008).

    Article  Google Scholar 

  28. Lurton, X. An Introduction to Underwater Acoustics: Principles and Applications (Springer, 2002).

    Google Scholar 

  29. Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, 1977).

    Google Scholar 

  30. Neese, B. et al. Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321, 821–823 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge A. F. Abouraddy, G. Benoit, M. Spencer, J. Rigling, M. Thompson, S. Griggs and J. F. Viens for their critical help and for discussions; S. A. Speakman for assistance with the XRD measurements; and E. L. Thomas for guidance. This work was supported in part by the Materials Research Science and Engineering Program of the US National Science Foundation under award number DMR-0819762, DARPA/Griggs and also in part by the US Army Research Office through the Institute for Soldier Nanotechnologies under contract no. W911NF-07-D-0004.

Author information

Authors and Affiliations

Authors

Contributions

Y.F. and J.D.J. conceived the architecture of piezoelectric fibres. S.E., Z.W. and N.C. designed and fabricated fibre samples and carried out acoustic and heterodyne optical measurements. Z.W. constructed the acoustic transmission set-up. P.T.R. designed and constructed the heterodyne optical set-up. S.E. measured the Fabry–Perot/piezoelectric fibres. Z.M.R. and A.M.S. carried out thin-film deposition. D.S. carried out SEM imaging. S.E., Z.W., N.C., F.S., J.D.J and Y.F. co-wrote the manuscript.

Corresponding author

Correspondence to Y. Fink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 15575 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egusa, S., Wang, Z., Chocat, N. et al. Multimaterial piezoelectric fibres. Nature Mater 9, 643–648 (2010). https://doi.org/10.1038/nmat2792

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2792

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing