Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spin injection/detection using an organic-based magnetic semiconductor

An Erratum to this article was published on 01 September 2010

This article has been updated

Abstract

The new paradigm of electronics, ‘spintronics’, promises to extend the functionality of information storage and processing in conventional electronics1. The principal spintronics device, the ‘spin valve’, consists of two magnetic layers decoupled by a spin-transporting spacer, which allows parallel (on) and antiparallel (off) alignment of the magnetizations (spins) of the two magnetic layers. The device resistance then depends on the spin alignment controlled by the external magnetic field. In pursuit of semiconductor spintronics2, there have been intensive efforts devoted to develop room-temperature magnetic semiconductors3 and also to incorporate both inorganic semiconductors4 and carbon-based materials5,6,7,8,9,10,11 as the spin-transporting channels. Molecule/organic-based magnets, which allow chemical tuning of electronic and magnetic properties, are a promising new class of magnetic materials for future spintronic applications12,13. Here, we report the realization of an organic-based magnet as an electron spin polarizer in the standard spintronics device geometry. A thin non-magnetic organic semiconductor layer and an epitaxial ferromagnetic oxide film were employed to form a hybrid magnetic tunnel junction. The results demonstrate the spin-polarizing nature of the organic-based magnetic semiconductor, vanadium(TCNE: tetracyanoethylene)x (x2; Tc400 K), and its function as a spin injector/detector in hybrid magnetic multilayer devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic view of a density of states in the organic-based magnetic semiconductor V(TCNE)x.
Figure 2: Magnetoresistance and device characteristics of a hybrid magnetic tunnel junction.
Figure 3: Temperature dependence of magnetoresistance.
Figure 4: Bias dependence of magnetoresistance.

Similar content being viewed by others

Change history

  • 23 July 2010

    In the original version of this article published online and in print, the received date should have been 29 December 2009, not 2010. This has been corrected in the PDF and HTML versions of this Letter.

References

  1. Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  2. Awschalom, D. D. & Flatté, M. E. Challenges for semiconductor spintronics. Nature Phys. 3, 153–159 (2007).

    Article  CAS  Google Scholar 

  3. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000).

    Article  CAS  Google Scholar 

  4. Appelbaum, I., Huang, B. & Monsma, D. J. Electronic measurement and control of spin transport in silicon. Nature 447, 295–298 (2007).

    Article  CAS  Google Scholar 

  5. Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).

    Article  CAS  Google Scholar 

  6. Hueso, L. E. et al. Transformation of spin information into large electrical signals using carbon nanotubes. Nature 445, 410–413 (2007).

    Article  CAS  Google Scholar 

  7. Dediu, V., Murgia, M., Matacotta, F. C., Taliani, C. & Barbanera, S. Room temperature spin polarized injection in organic semiconductor. Solid State Commun. 122, 181–184 (2002).

    CAS  Google Scholar 

  8. Xiong, Z. H., Wu, D., Vardeny, Z. V. & Shi, J. Giant magnetoresistance in organic spin-valves. Nature 427, 821–824 (2004).

    Article  CAS  Google Scholar 

  9. Shim, J. H. et al. Large spin diffusion length in an amorphous organic semiconductor. Phys. Rev. Lett. 100, 226603 (2008).

    Article  CAS  Google Scholar 

  10. Santos, T. S. et al. Room-temperature tunnel magnetoresistance and spin-polarized tunneling through an organic semiconductor barrier. Phys. Rev. Lett. 98, 016601 (2007).

    Article  CAS  Google Scholar 

  11. Yoo, J-W. et al. Giant magnetoresistance in ferromagnet/organic semiconductor/ferromagnet heterojunctions. Phys. Rev. B 80, 205207 (2009).

    Article  Google Scholar 

  12. Miller, J. S. & Epstein, A. J. Organic organometallic molecular magnetic materials — designer magnets. Angew. Chem. Int. Ed. Engl. 33, 385–415 (1994).

    Article  Google Scholar 

  13. Prigodin, V. N., Raju, N. P., Pokhodnya, K. I., Miller, J. S. & Epstein, A. J. Spin driven resistance in organic-based magnetic semiconductor V[TNCE]x . Adv. Mater. 14, 1230–1233 (2002).

    Article  CAS  Google Scholar 

  14. Tengstedt, C., de Jong, M. P., Kanciurzewska, A., Carlegrim, E. & Fahlman, M. X-ray magnetic circular dichroism and resonant photoemission of V(TCNE)x hybrid magnets. Phys. Rev. Lett. 96, 057209 (2006).

    Article  CAS  Google Scholar 

  15. Kortright, J. B., Lincoln, D. M., Edelstein, R. S. & and Epstein, A. J. Bonding, backbonding, and spin-polarized molecular orbitals: Basis for magnetism and semiconducting transport in V[TCNE]x2 . Phys. Rev. Lett. 100, 257204 (2008).

    Article  CAS  Google Scholar 

  16. Caruso, A. N. et al. Direct evidence of electron spin polarization from an organic-based magnet: [FeII(TCNE)(NCMe)2][FeIIICl4]. Phys. Rev. B 79, 195202 (2009).

    Article  Google Scholar 

  17. De Fusco, G. C., Pisani, L., Montanari, B. & Harrison, N. M. Density functional study of the magnetic coupling in V(TCNE)x . Phys. Rev. B 79, 085201 (2009).

    Article  Google Scholar 

  18. Matsuura, H., Miyake, K. & Fukuyama, H. Theory of room temperature ferromagnet V(TCNE)x (1.5<x<2): Role of hidden flat bands. J. Phys. Soc. Jpn 79, 034712 (2010).

    Article  Google Scholar 

  19. Manriquez, J. M., Yee, G. T., Mclean, R. S., Epstein, A. J. & Miller, J. S. A room-temperature molecular/organic-based magnet. Science 252, 1415–1417 (1991).

    Article  CAS  Google Scholar 

  20. Zheludev, A. et al. Experimental determination of the spin density in the tetracyanoethenide free radical, [TCNE], by single-crystal polarized neutron diffraction. a view of a π* orbital. J. Am. Chem. Soc. 116, 7243–7249 (1994).

    Article  CAS  Google Scholar 

  21. Pokhodnya, K. I., Epstein, A. J. & Miller, J. S. Thin-film V[TCNE]x magnets. Adv. Mater. 12, 410–413 (2000).

    Article  CAS  Google Scholar 

  22. Haskel, D. et al. Local structural order in the disordered vanadium tetracyanoethylene room-temperature molecule-based magnet. Phys. Rev. B 70, 054422 (2004).

    Article  Google Scholar 

  23. Tengstedt, C. et al. Coulomb interactions in rubidium-doped tetracyanoethylene: A model system for organometallic magnets. Phys. Rev. B 69, 165208 (2004).

    Article  Google Scholar 

  24. Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T. & van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790–R4793 (2000).

    Article  CAS  Google Scholar 

  25. Sato, O., Tao, J. & Zhang, Y. Z. Control of magnetic properties through external stimuli. Angew. Chem. Int. Ed. 46, 2152–2187 (2007).

    Article  CAS  Google Scholar 

  26. Yoo, J-W. et al. Multiple photonic responses in films of organic-based magnetic semiconductor V(TCNE)x, x2. Phys. Rev. Lett. 97, 247205 (2006).

    Article  Google Scholar 

  27. Yamada, H. et al. Engineered interface of magnetic oxides. Science 305, 646–648 (2004).

    Article  CAS  Google Scholar 

  28. Park, J-H. et al. Direct evidence for a half-metallic ferromagnet. Nature 392, 794–796 (1998).

    Article  CAS  Google Scholar 

  29. Park, J-H. et al. Magnetic properties at surface boundary of a half-metallic ferromagnet La0.7Sr0.3MnO3 . Phys. Rev. Lett. 81, 1953–1956 (1998).

    Article  CAS  Google Scholar 

  30. Tsymbal, E. Y., Mryasov, O. N. & LeClair, P. R. Spin-dependent tunnelling in magnetic tunnel junctions. J. Phys. Condens. Matter 15, R109–R142 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. S. Miller and K. I. Pokhodnya for initial collaboration and their help in developing V(TCNE)x film. This work was supported in part by AFOSR Grant No. FA9550-06-1-0175, DOE Grant Nos DE-FG02-01ER45931, DE-FG02-86ER45271, DE-FG02-06ER46327, NSF Grant No. DMR-0805220 and ONR Grant No. N00014-07-1-0215.

Author information

Authors and Affiliations

Authors

Contributions

J-W.Y., V.N.P. and A.J.E. wrote the manuscript. J-W.Y. and A.J.E. worked on device characteristics, data collection and analysis. J-W.Y. and C-Y.C. did device fabrication. C-Y.C. did CVD growth for V(TCNE)x films and synthesis for the precursors of V(TCNE)x. H.W.J., C.W.B. and C.B.E. prepared epitaxial LSMO samples with LAO capping. All authors discussed the progress of research and reviewed the manuscript.

Corresponding author

Correspondence to A. J. Epstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 999 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, JW., Chen, CY., Jang, H. et al. Spin injection/detection using an organic-based magnetic semiconductor. Nature Mater 9, 638–642 (2010). https://doi.org/10.1038/nmat2797

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2797

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing