Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multistability of a coherent spin ensemble in a semiconductor microcavity

A Corrigendum to this article was published on 15 December 2010

This article has been updated

Abstract

Coherent manipulation of spin ensembles is a key issue in the development of spintronics. In particular, multivalued spin switching may lead to new schemes of logic gating and memories. This phenomenon has been studied with atom vapours 30 years ago, but is still awaited in the solid state. Here, we demonstrate spin multistability with microcavity polaritons in a trap. Owing to the spinor nature of these light–matter quasiparticles and to the anisotropy of their interactions, we can optically control the spin state of a single confined level by tuning the excitation power, frequency and polarization. First, we realize high-efficiency power-dependent polarization switching. Then, at constant excitation power, we evidence polarization hysteresis and determine the conditions for realizing multivalued spin switching. Finally, we demonstrate an unexpected regime, where our system behaves as a high-contrast spin trigger. These results open new pathways to the development of advanced spintronics devices and to the realization of multivalued logic circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polariton lateral confinement.
Figure 2: Spinor bistability and polarization switching.
Figure 3: Multistability.
Figure 4: Tuning the multistability.
Figure 5: Spin multistability.

Similar content being viewed by others

Change history

  • 19 November 2010

    In the version of this Article originally published, the x-axis of Figure 1c was incorrectly labelled 'meV' instead of 'μeV'. This error has now been corrected in the HTML and PDF versions.

References

  1. Myers, R. C. et al. Zero-field optical manipulation of magnetic ions in semiconductors. Nature Mater. 7, 203–208 (2008).

    Article  CAS  Google Scholar 

  2. Imamoğlu, A. Cavity QED based on collective magnetic dipole coupling: Spin ensembles as hybrid Two-Level systems. Phys. Rev. Lett. 102, 083602 (2009).

    Article  Google Scholar 

  3. Greilich, A. et al. Ultrafast optical rotations of electron spins in quantum dots. Nature Phys. 5, 262–266 (2009).

    Article  CAS  Google Scholar 

  4. Awschalom, D. D. & Flatte, M. E. Challenges for semiconductor spintronics. Nature Phys. 3, 153–159 (2007).

    Article  CAS  Google Scholar 

  5. Lagoudakis, P. G. et al. Stimulated spin dynamics of polaritons in semiconductor microcavities. Phys. Rev. B 65, 161310 (2002).

    Article  Google Scholar 

  6. Martín, M. D., Aichmayr, G., Viña, L. & André, R. Polarization control of the nonlinear emission of semiconductor microcavities. Phys. Rev. Lett. 89, 077402 (2002).

    Article  Google Scholar 

  7. Kasprzak, J. et al. Bose-Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  CAS  Google Scholar 

  8. Bajoni, D. et al. Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities. Phys. Rev. Lett. 100, 047401 (2008).

    Article  Google Scholar 

  9. Amo, A. et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–295 (2009).

    Article  CAS  Google Scholar 

  10. Leyder, C. et al. Observation of the optical spin Hall effect. Nature Phys. 3, 628–631 (2007).

    Article  CAS  Google Scholar 

  11. Lagoudakis, K. G. et al. Observation of half-quantum vortices in an exciton-polariton condensate. Science 326, 974–976 (2009).

    Article  CAS  Google Scholar 

  12. Baas, A., Karr, J. P., Eleuch, H. & Giacobino, E. Optical bistability in semiconductor microcavities. Phys. Rev. A 69, 023809 (2004).

    Article  Google Scholar 

  13. Bajoni, D. et al. Optical bistability in a GaAs-based polariton diode. Phys. Rev. Lett. 101, 266402 (2008).

    Article  Google Scholar 

  14. Tsintzos, S. I., Pelekanos, N. T., Konstantinidis, G., Hatzopoulos, Z. & Savvidis, P. G. A GaAs polariton light-emitting diode operating near room temperature. Nature 453, 372–375 (2008).

    Article  CAS  Google Scholar 

  15. Deveaud-Pledran, B. Solid-state physics: Polaritronics in view. Nature 453, 297–298 (2008).

    Article  CAS  Google Scholar 

  16. Shelykh, I. et al. Semiconductor microcavity as a spin-dependent optoelectronic device. Phys. Rev. B 70, 035320 (2004).

    Article  Google Scholar 

  17. Kitano, M., Yabuzaki, T. & Ogawa, T. Optical tristability. Phys. Rev. Lett. 46, 926–929 (1981).

    Article  CAS  Google Scholar 

  18. Cecchi, S., Giusfredi, G., Petriella, E. & Salieri, P. Observation of optical tristability in sodium vapors. Phys. Rev. Lett. 49, 1928–1931 (1982).

    Article  CAS  Google Scholar 

  19. Dery, H., Dalal, P., Cywinski, L. & Sham, L. J. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature 447, 573–576 (2007).

    Article  CAS  Google Scholar 

  20. Behin-Aein, B., Datta, D., Salahuddin, S. & Datta, S. Proposal for an all-spin logic device with built-in memory. Nature Nanotech. 5, 266–270 (2010).

    Article  CAS  Google Scholar 

  21. Gippius, N. A. et al. Polarization multistability of cavity polaritons. Phys. Rev. Lett. 98, 236401 (2007).

    Article  CAS  Google Scholar 

  22. Shelykh, I. A., Liew, T. C. H. & Kavokin, A. V. Spin rings in semiconductor microcavities. Phys. Rev. Lett. 100, 116401 (2008).

    Article  CAS  Google Scholar 

  23. Liew, T. C. H., Kavokin, A. V. & Shelykh, I. A. Optical circuits based on polariton neurons in semiconductor microcavities. Phys. Rev. Lett. 101, 016402 (2008).

    Article  CAS  Google Scholar 

  24. Amo, A. et al. Exciton–polariton spin switches. Nature Photon. 4, 361–366 (2010).

    Article  CAS  Google Scholar 

  25. El-Daïf, O. et al. Polariton quantum boxes in semiconductor microcavities. Appl. Phys. Lett. 88, 061105 (2006).

    Article  Google Scholar 

  26. Kwong, N. H., Takayama, R., Rumyantsev, I., Kuwata-Gonokami, M. & Binder, R. Third-order exciton-correlation and nonlinear cavity-polariton effects in semiconductor microcavities. Phys. Rev. B 64, 045316 (2001).

    Article  Google Scholar 

  27. Saba, M. et al. Crossover from exciton to biexciton polaritons in semiconductor microcavities. Phys. Rev. Lett. 85, 385 (2000).

    Article  CAS  Google Scholar 

  28. Ramkumar, K. & Nagaraj, K. A ternary schmitt trigger. IEEE Trans. Circuits Systems 32, 732–735 (1985).

    Google Scholar 

  29. Christmann, G., Butté, R., Feltin, E., Carlin, J-F. & Grandjean, N. Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity. Appl. Phys. Lett. 93, 051102 (2008).

    Article  Google Scholar 

  30. Jonsson, F. & Flytzanis, C. Polarization state controlled multistability of a nonlinear magneto-optic cavity. Phys. Rev. Lett. 82, 1426 (1999).

    Article  CAS  Google Scholar 

  31. SoljaCiC, M. & Joannopoulos, J. D. Enhancement of nonlinear effects using photonic crystals. Nature Mater. 3, 211–219 (2004).

    Article  CAS  Google Scholar 

  32. Zhou, L., Pu, H., Ling, H. Y. & Zhang, W. Cavity-mediated strong matter wave bistability in a spin-1 condensate. Phys. Rev. Lett. 103, 160403 (2009).

    Article  Google Scholar 

  33. O’Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank D. Sarchi, I. Carusotto, M. Portella-Oberli, T. C. H. Liew and V. Savona for fruitful discussions, and O. El Daïf for his contributions in engineering the sample. The present work was supported by the Swiss National Research Foundation through ‘NCCR Quantum Photonics’.

Author information

Authors and Affiliations

Authors

Contributions

T.K.P. carried out the experiments and data analysis. M.W. developed the theoretical model. M.W. and Y.L. did the simulations. F.M.G. made the sample. B.D.P. supervised the project.

Corresponding author

Correspondence to T. K. Paraïso.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 527 kb)

Supplementary Information

Supplementary Information (MOV 431 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paraïso, T., Wouters, M., Léger, Y. et al. Multistability of a coherent spin ensemble in a semiconductor microcavity. Nature Mater 9, 655–660 (2010). https://doi.org/10.1038/nmat2787

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2787

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing