Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics

This article has been updated

Abstract

Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration and images corresponding to steps for fabricating conformal silk-supported PI electrode arrays.
Figure 2: Time-dependent changes as the silk substrate dissolves.
Figure 3: Neural electrode arrays of varying thickness on simulated brain models to illustrate flexibility.
Figure 4: Mechanical modelling, theoretical predictions and measured properties.
Figure 5: Photographs and data from animal validation experiments.

Similar content being viewed by others

Change history

  • 23 April 2010

    In the original published versions of this Article the author list was incorrect. This has now been corrected in both the full-text HTML and the PDF versions.

References

  1. Kim, S. et al. Integrated wireless neural interface based on the Utah electrode array. Biomed. Microdevices 11, 453–466 (2009).

    Article  CAS  Google Scholar 

  2. Ryu, S. I. & Shenoy, K. V. Human cortical prostheses: Lost in translation? Neurosurg. Focus 27, E5 (2009).

    Article  Google Scholar 

  3. Andersen, R. A., Musallam, S. & Pesaran, B. Selecting the signals for a brain–machine interface. Curr. Opin. Neurobiol. 14, 720–726 (2004).

    Article  CAS  Google Scholar 

  4. Mehring, C. et al. Inference of hand movements from local field potentials in monkey motor cortex. Nature Neurosci. 6, 1253–1254 (2003).

    Article  CAS  Google Scholar 

  5. Ball, T. et al. Towards an implantable brain–machine interface based on epicortical field potentials. Biomed. Tech. 49, 756–759 (2004).

    Google Scholar 

  6. Wilson, J. A., Felton, E. A., Garell, P. C., Schalk, G. & Williams, J. C. ECoG factors underlying multimodal control of a brain–computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 246–250 (2006).

    Article  Google Scholar 

  7. Freeman, W. J., Rogers, L. J., Holmes, M. D. & Silbergeld, D. L. Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands. J. Neurosci. Methods 95, 111–121 (2000).

    Article  CAS  Google Scholar 

  8. Kellis, S. S., House, P. A., Thomson, K. E., Brown, R. & Greger, B. Human neocortical electrical activity recorded on nonpenetrating microwire arrays: Applicability for neuroprostheses. Neurosurg. Focus 27, E9 (2009).

    Article  Google Scholar 

  9. Rubehn, B., Bosman, C., Oostenveld, R., Fries, P. & Stieglitz, T. A MEMS-based flexible multichannel ECoG-electrode array. J. Neural Eng. 6, 036003 (2009).

    Article  Google Scholar 

  10. Hollenberg, B. A., Richards, C. D., Richards, R., Bahr, D. F. & Rector, D. M. A MEMS fabricated flexible electrode array for recording surface field potentials. J. Neurosci. Methods 153, 147–153 (2006).

    Article  Google Scholar 

  11. Yu, Z. et al. Monitoring hippocampus electrical activity in vitro on an elastically deformable microelectrode array. J. Neurotrauma 26, 1135–1145 (2009).

    Article  Google Scholar 

  12. Meacham, K. W., Giuly, R. J., Guo, L., Hochman, S. & DeWeerth, S. P. A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord. Biomed. Microdev. 10, 259–269 (2008).

    Article  Google Scholar 

  13. Lawrence, B. D., Cronin-Golomb, M., Georgakoudi, I., Kaplan, D. L. & Omenetto, F. G. Bioactive silk protein biomaterial systems for optical devices. Biomacromolecules 9, 1214–1220 (2008).

    Article  CAS  Google Scholar 

  14. Omenetto, F. G. & Kaplan, D. L. A new route for silk. Nature Photon. 2, 641–643 (2008).

    Article  CAS  Google Scholar 

  15. Jin, H-J. et al. Water-stable silk films with reduced β-sheet content. Adv. Funct. Mater. 15, 1241–1247 (2005).

    Article  CAS  Google Scholar 

  16. Lu, Q. et al. Water-insoluble silk films with silk I structure. Acta Biomater. 6, 1380–1387 (2009).

    Article  Google Scholar 

  17. Jiang, C. et al. Mechanical properties of robust ultrathin silk fibroin films. Adv. Funct. Mater. 17, 2229–2237 (2007).

    Article  CAS  Google Scholar 

  18. Sofia, S., McCarthy, M. B., Gronowicz, G. & Kaplan, D. L. Functionalized silk-based biomaterials for bone formation. J. Biomed. Mater. Res. 54, 139–148 (2001).

    Article  CAS  Google Scholar 

  19. Perry, H., Gopinath, A., Kaplan, D. L., Negro, L. D. & Omenetto, F. G. Nano- and micropatterning of optically transparent, mechanically robust, biocompatible silk fibroin films. Adv. Mater. 20, 3070–3072 (2008).

    Article  CAS  Google Scholar 

  20. Murphy, A. R., John, P. S. & Kaplan, D. L. Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation. Biomaterials 29, 2829–2838 (2008).

    Article  CAS  Google Scholar 

  21. Altman, G. H. et al. Silk-based biomaterials. Biomaterials 24, 401–416 (2003).

    Article  CAS  Google Scholar 

  22. Santin, M., Motta, A., Freddi, G. & Cannas, M. In vitro evaluation of the inflammatory potential of the silk fibroin. J. Biomed. Mater. Res. 46, 382–389 (1999).

    Article  CAS  Google Scholar 

  23. Kim, D-H. et al. Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl. Phys. Lett. 95, 133701–133703 (2009).

    Article  Google Scholar 

  24. Amsden, J. J. et al. Spectral analysis of induced colour change on periodically nanopatterned silk films. Opt. Express 17, 21271–21279 (2009).

    Article  CAS  Google Scholar 

  25. Parker, S. T. et al. Biocompatible silk printed optical waveguides. Adv. Mater. 21, 2411–2415 (2009).

    Article  CAS  Google Scholar 

  26. Soong, H. K. & Kenyon, K. R. Adverse reactions to virgin silk sutures in cataract surgery. Ophthalmology 91, 479–483 (1984).

    Article  CAS  Google Scholar 

  27. Chaudhury, M. K. & Whitesides, G. M. Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly(dimethylsiloxane) and their chemical derivatives. Langmuir 7, 1013–1025 (1991).

    Article  CAS  Google Scholar 

  28. Someya, T. et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl Acad. Sci. USA 102, 12321–12325 (2005).

    Article  CAS  Google Scholar 

  29. Padnick, L. B. & Linsenmeier, R. A. Properties of the flash visual evoked potential recorded in the cat primary visual cortex. Vision Res. 39, 2833–2840 (1999).

    Article  CAS  Google Scholar 

  30. Cardin, J. A., Palmer, L. A. & Contreras, D. Stimulus feature selectivity in excitatory and inhibitory neurons in primary visual cortex. J. Neurosci. 27, 10333–10344 (2007).

    Article  CAS  Google Scholar 

  31. Cardin, J. A., Palmer, L. A. & Contreras, D. Cellular mechanisms underlying stimulus-dependent gain modulation in primary visual cortex neurons in vivo. Neuron 59, 150–160 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Banks and J. A. N. T. Soares for help using facilities at the Frederick Seitz Materials Research Laboratory. This material is based on work supported by a National Security Science and Engineering Faculty Fellowship and the US Department of Energy, Division of Materials Sciences under Award No. DEFG02-91ER45439, through the Frederick Seitz MRL and Center for Microanalysis of Materials at the University of Illinois at Urbana-Champaign. The aspects of the work relating to silk are supported by the US Army Research Laboratory and the US Army Research Office under contract number W911 NF-07-1-0618 and by the DARPA-DSO and the NIH P41 Tissue Engineering Resource Center (P41 EB002520). Work at the University of Pennsylvania is supported by the National Institutes of Health Grants (NINDS RO1-NS041811-04, R01 NS 48598-04), and the Klingenstein Foundation. J.A.R. is supported by a National Science Security and Engineering Faculty Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

D-H.K., J.V., J.J.A., J.X., L.V., Y-S.K., D.C., D.L.K., F.G.O., Y.H, K-C.H., M.R.Z., B.L. and J.A.R. designed the experiments. D.H.K., E.S.F., J.V., J.J.A., J.X., L.V., Y-S.K., B.P. and J.A.B. carried out experiments and analysis. D-H.K., J.V., J.J.A., J.X., L.V., J.A.B., D.C., D.L.K., F.G.O., Y.H., B.L. and J.A.R. wrote the paper.

Corresponding authors

Correspondence to Brian Litt or John A. Rogers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DH., Viventi, J., Amsden, J. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nature Mater 9, 511–517 (2010). https://doi.org/10.1038/nmat2745

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2745

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing