Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transformation-mediated ductility in CuZr-based bulk metallic glasses

Abstract

Bulk metallic glasses (BMGs) generally fail in a brittle manner under uniaxial, quasistatic loading at room temperature1. The lack of plastic strain is a consequence of shear softening2, a phenomenon that originates from shear-induced dilation3 that causes plastic strain to be highly localized in shear bands. So far, significant tensile ductility has been reported only for microscopic samples of around 100 nm (ref. 4) as well as for high strain rates5, and so far no mechanisms are known, which could lead to work hardening and ductility in quasistatic tension in macroscopic BMG samples. In the present work we developed CuZr-based BMGs, which polymorphically precipitate nanocrystals during tensile deformation and subsequently these nanocrystals undergo twinning. The formation of such structural heterogeneities hampers shear band generation and results in macroscopically detectable plastic strain and work hardening. The precipitation of nanocrystals and their subsequent twinning can be understood in terms of a deformation-induced softening of the instantaneous shear modulus. This unique deformation mechanism is believed to be not just limited to CuZr-based BMGs but also to promote ductility in other BMGs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Room-temperature true stress–strain curves in tension and surface of the material after fracture.
Figure 2: Microstructure of an as-cast Cu46Zr46Al8 specimen.
Figure 3: Microstructure of a Cu47.5Zr47.5Al5 specimen deformed to fracture.
Figure 4: Schematic of the deformation process in the CuZr-based alloys investigated.

Similar content being viewed by others

References

  1. Schuh, C. A., Hufnagel, T. C. & Ramamurty, U. Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067–4109 (2007).

    Article  CAS  Google Scholar 

  2. Spaepen, F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407–415 (1977).

    Article  CAS  Google Scholar 

  3. Spaepen, F. Homogeneous flow of metallic glasses: A free volume perspective. Scr. Mater. 54, 363–367 (2006).

    Article  CAS  Google Scholar 

  4. Guo, H. et al. Tensile ductility and necking of metallic glass. Nature Mater. 6, 735–739 (2007).

    Article  CAS  Google Scholar 

  5. Yokoyama, Y., Fujita, K., Yavari, A. R. & Inoue, A. Malleable hypoeutectic Zr–Ni–Cu–Al bulk glassy alloys with tensile plastic elongation at room temperature. Phil. Mag. Lett. 89, 322–334 (2009).

    Article  CAS  Google Scholar 

  6. Eckert, J., Das, J., Pauly, S. & Duhamel, C. Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 22, 285–301 (2007).

    Article  CAS  Google Scholar 

  7. Pauly, S. et al. Microstructural heterogeneities governing the deformation of Cu47.5Zr47.5Al5 bulk metallic glass composites. Acta Mater. 57, 5445–5453 (2009).

    Article  CAS  Google Scholar 

  8. Koval, Y. N., Firstov, G. S. & Kotko, A. V. Martensitic transformation and shape memory effect in ZrCu intermetallic compound. Scr. Metall. Mater. 27, 1611–1616 (1992).

    Article  CAS  Google Scholar 

  9. Pauly, S. Deformation-induced martensitic transformation in Cu–Zr–(Al,Ti) bulk metallic glass composites. Scr. Mater. 60, 431–434 (2009).

    Article  CAS  Google Scholar 

  10. Pauly, S. et al. Modeling deformation behavior of Cu–Zr–Al bulk metallic glass matrix composites. Appl. Phys. Lett. 95, 101906 (2009).

    Article  Google Scholar 

  11. Carvalho, E. M. & Harris, I. R. Constitutional and structural studies of the intermetallic phase, ZrCu. J. Mater. Sci. 15, 1224–1230 (1980).

    Article  CAS  Google Scholar 

  12. Lewandowski, J. J. & Greer, A. L. Temperature rise at shear bands in metallic glasses. Nature Mater. 5, 15–18 (2006).

    Article  CAS  Google Scholar 

  13. Georgarakis, K. et al. Shear band melting and serrated flow in metallic glasses. Appl. Phys. Lett. 93, 031907 (2008).

    Article  Google Scholar 

  14. Chen, M., Inoue, A., Zhang, W. & Sakurai, T. Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96, 245502 (2006).

    Article  Google Scholar 

  15. Chen, H., He, Y., Shiflet, G. J. & Poon, S. J. Deformation-induced nanocrystal formation in shear bands of amorphous alloys. Nature 367, 541–543 (1994).

    Article  CAS  Google Scholar 

  16. Kim, J. J., Choi, Y., Suresh, S. & Argon, A. S. Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science 295, 654–657 (2002).

    CAS  Google Scholar 

  17. Goldstein, M. Viscous liquids and glass transition: A potential energy barrier picture. J. Chem. Phys. 51, 3728–3739 (1969).

    Article  CAS  Google Scholar 

  18. Stillinger, F. H. A topographic view of supercooled liquids and glass formation. Science 267, 1935–1939 (1995).

    Article  CAS  Google Scholar 

  19. Johnson, W. L. & Samwer, K. A universal criterion for plastic yielding of metallic glasses with a (T/Tg)(2/3) temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).

    Article  CAS  Google Scholar 

  20. Johnson, W. L., Demetriou, M. D., Harmon, J. S., Lind, M. L. & Samwer, K. Rheology and ultrasonic properties of metallic glass-forming liquids: A potential energy landscape perspective. MRS Bull. 32, 644–650 (2007).

    Article  CAS  Google Scholar 

  21. Malandro, D. L. & Lacks, D. J. Relationships of shear-induced changes in the potential energy landscape to the mechanical properties of ductile glasses. J. Chem. Phys. 110, 4593–4601 (1999).

    Article  CAS  Google Scholar 

  22. Mayr, S. G. Activation energy of shear transformation zones: A key for understanding rheology of glasses and liquids. Phys. Rev. Lett. 97, 195501 (2006).

    Article  CAS  Google Scholar 

  23. Ichitsubo, T. et al. Microstructure of fragile metallic glasses inferred from ultrasound-accelerated crystallization in Pd-based metallic glasses. Phys. Rev. Lett. 95, 245501 (2005).

    Article  CAS  Google Scholar 

  24. Zeng, K. J., Hämäläinen, M. & Lukas, H. L. A new thermodynamic description of the Cu–Zr system. J. Phase Equilib. 15, 577–586 (1994).

    Article  CAS  Google Scholar 

  25. Mattern, N. et al. Structural evolution of Cu–Zr metallic glasses under tension. Acta Mater. 57, 4133–4139 (2009).

    Article  CAS  Google Scholar 

  26. Wang, W. H., Wen, P., Zhao, D. Q., Pan, M. X. & Wang, R. J. Relationship between glass transition temperature and Debye temperature in bulk metallic glasses. J. Mater. Res. 18, 2747–2751 (2003).

    Article  CAS  Google Scholar 

  27. Wolf, D., Okamoto, P. R., Yip, S., Lutsko, J. F. & Kluge, M. Thermodynamic parallels between solid-state amorphization and melting. J. Mater. Res. 5, 286–301 (1990).

    Article  CAS  Google Scholar 

  28. Ren, X. & Otsuka, K. The role of softening in elastic constant c(44) in martensitic transformation. Scr. Mater. 38, 1669–1675 (1998).

    Article  CAS  Google Scholar 

  29. Chen, M. W. et al. Deformation twinning in nanocrystalline aluminum. Science 300, 1275–1277 (2003).

    Article  CAS  Google Scholar 

  30. Lu, L., Chen, X., Huang, X. & Lu, K. Revealing the maximum strength in nanotwinned copper. Science 323, 607–610 (2009).

    Article  CAS  Google Scholar 

  31. Waitz, T. & Karnthaler, H. P. Martensitic transformation of NiTi nanocrystals embedded in an amorphous matrix. Acta Mater. 52, 5461–5469 (2004).

    Article  CAS  Google Scholar 

  32. Cheng, Q., Wu, H. A., Wang, Y. & Wang, X. X. Pseudoelasticity of Cu–Zr nanowires via stress-induced martensitic phase transformations. Appl. Phys. Lett. 95, 021911 (2009).

    Article  Google Scholar 

  33. Li, M. & Johnson, W. L. Instability of metastable solid-solutions and crystal to glass-transition. Phys. Rev. Lett. 70, 1120–1123 (1993).

    Article  CAS  Google Scholar 

  34. Orowan, E. Proc. 1st National Congress of Applied Mechanics 453–472 (American Society of Mechanical Engineers, 1952).

    Google Scholar 

  35. Argon, A. S. Plastic deformation in metallic glasses. Acta Metall. 27, 47–58 (1979).

    Article  CAS  Google Scholar 

  36. Schall, P., Weitz, D. A. & Spaepen, F. Structural rearrangements that govern flow in colloidal glasses. Science 318, 1895–1899 (2007).

    Article  CAS  Google Scholar 

  37. Cheung, T. L. & Shek, C. H. Thermal and mechanical properties of Cu–Zr–Al bulk metallic glasses. J. Alloys Compounds 434, 71–74 (2007).

    Article  Google Scholar 

  38. Porter, D. L. & Heuer, A. H. Mechanisms of toughening partially stabilized zirconia (PSZ). J. Am. Ceram. Soc. 60, 183–184 (1977).

    Article  CAS  Google Scholar 

  39. Gurland, J. Quantitative Microscopy (McGraw-Hill, 1968).

    Google Scholar 

Download references

Acknowledgements

The authors thank B. Bartusch, S. Donath, M. Frey, U. Wilke and H. Schulze for technical assistance, and H. Ehrenberg, H. P. Karnthaler, G. Liu, N. Mattern, J. D. Moore, S. Scudino, M. Stoica and T. G. Woodcock for stimulating discussions. S.P. acknowledges financial support granted by the programme ‘Promotionsförderung des Cusanuswerks’.

Author information

Authors and Affiliations

Authors

Contributions

S.P. and J.E. designed experiments; S.P., S.G. and G.W. carried out experiments; S.P., S.G., G.W. and U.K. analysed data and S.P. and J.E. wrote the paper.

Corresponding author

Correspondence to S. Pauly.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1061 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pauly, S., Gorantla, S., Wang, G. et al. Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nature Mater 9, 473–477 (2010). https://doi.org/10.1038/nmat2767

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2767

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing