Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers

Abstract

The design and synthesis of protein-like polymers is a fundamental challenge in materials science. A biomimetic approach is to explore the impact of monomer sequence on non-natural polymer structure and function. We present the aqueous self-assembly of two peptoid polymers into extremely thin two-dimensional (2D) crystalline sheets directed by periodic amphiphilicity, electrostatic recognition and aromatic interactions. Peptoids are sequence-specific, oligo-N-substituted glycine polymers designed to mimic the structure and functionality of proteins. Mixing a 1:1 ratio of two oppositely charged peptoid 36mers of a specific sequence in aqueous solution results in the formation of giant, free-floating sheets with only 2.7 nm thickness. Direct visualization of aligned individual peptoid chains in the sheet structure was achieved using aberration-corrected transmission electron microscopy. Specific binding of a protein to ligand-functionalized sheets was also demonstrated. The synthetic flexibility and biocompatibility of peptoids provide a flexible and robust platform for integrating functionality into defined 2D nanostructures.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two-dimensional crystalline sheets formed from two oppositely charged peptoid polymers.
Figure 2: Imaging of 2D crystalline sheets assembled from periodic amphiphilic peptoid polymers.
Figure 3: Direct observation of peptoid chains using aberration- corrected TEM (TEAM 0.5).
Figure 4: Characterization of sheets and sheet-formation kinetics.
Figure 5: Sheet-formation kinetics and mechanism.
Figure 6: Specific protein binding to functionalized sheets.

Similar content being viewed by others

References

  1. Cornelissen, J. J. L. M., Rowan, A. E., Nolte, R. J. M. & Sommerdijk, N. A. J. M. Chiral architectures from macromolecular building blocks. Chem. Rev. 101, 4039–4070 (2001).

    Article  CAS  Google Scholar 

  2. Fredrickson, G. H. & Bates, F. S. Dynamics of block copolymers: Theory and experiment. Annu. Rev. Mater. Sci. 26, 501–550 (1996).

    Article  CAS  Google Scholar 

  3. Lin, Y., Skaff, H., Emrick, T., Dinsmore, A. D. & Russell, T. P. Nanoparticle assembly and transport at liquid–liquid interfaces. Science 299, 226–229 (2003).

    Article  CAS  Google Scholar 

  4. Percec, V. et al. Poly(oxazolines)s with tapered minidendritic side groups the simplest cylindrical models to investigate the formation of two-dimensional and three-dimensional order by direct visualization. Biomacromolecules 2, 706–728 (2001).

    Article  CAS  Google Scholar 

  5. Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996).

    Article  CAS  Google Scholar 

  6. Sakamoto, J., van Heijst, J., Lukin, O. & Schlüter, A. D. Two-dimensional polymers: Just a dream of synthetic chemists? Angew. Chem. Int. Ed. 48, 1030–1069 (2009).

    Article  CAS  Google Scholar 

  7. Dikin, D. A. et al. Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007).

    Article  CAS  Google Scholar 

  8. Zhang, S. G., Holmes, T., Lockshin, C. & Rich, A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc. Natl Acad. Sci. USA 90, 3334–3338 (1993).

    Article  CAS  Google Scholar 

  9. Tang, Z. Y., Zhang, Z. L., Wang, Y., Glotzer, S. C. & Kotov, N. A. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274–278 (2006).

    Article  CAS  Google Scholar 

  10. Gast, A. P., Vinson, P. K. & Coganfarinas, K. A. An intriguing morphology in crystallizable block copolymers. Macromolecules 26, 1774–1776 (1993).

    Article  CAS  Google Scholar 

  11. Keith, H. D., Giannoni, G. & Padden, F. J. Single crystals of poly(L-glutamic acid). Biopolymers 7, 775–792 (1969).

    Article  CAS  Google Scholar 

  12. Keller, A. A note on single crystals in polymers—evidence for a folded chain configuration. Phil. Mag. 2, 1171–1175 (1957).

    Article  CAS  Google Scholar 

  13. Bassett, D. C. Principles of Polymers Morphology (Cambridge Univ. Press, 1981).

    Google Scholar 

  14. Geil, P. H. Polymer Single Crystal (Wiley, 1963).

    Google Scholar 

  15. Nakamura, J. & Kawaguchi, A. In situ observations of annealing behaviour of polyethylene single crystals on various substrates by AFM. Macromolecules 37, 3725–3734 (2004).

    Article  CAS  Google Scholar 

  16. Brack, A. & Orgel, L. E. Beta-structures of alternating polypeptides and their possible prebiotic significance. Nature 256, 383–387 (1975).

    Article  CAS  Google Scholar 

  17. Zhang, S. G. Fabrication of novel biomaterials through molecular self-assembly. Nature Biotech. 21, 1171–1178 (2003).

    Article  CAS  Google Scholar 

  18. Aggeli, A. et al. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta-sheet tapes, ribbons, fibrils, and fibers. Proc. Natl Acad. Sci. USA 98, 11857–11862 (2001).

    Article  CAS  Google Scholar 

  19. Krejchi, M. T. et al. Chemical sequence control of beta-sheet assembly in macromolecular crystals of periodic polypeptides. Science 265, 1427–1432 (1994).

    Article  CAS  Google Scholar 

  20. Vauthey, S., Santoso, S., Gong, H. Y., Watson, N. & Zhang, S. G. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Natl Acad. Sci. USA 99, 5355–5360 (2002).

    Article  CAS  Google Scholar 

  21. Simon, R. J. et al. Peptoids—a modular approach to drug discovery. Proc. Natl Acad. Sci. USA 89, 9367–9371 (1992).

    Article  CAS  Google Scholar 

  22. Barron, A. E. & Zuckermann, R. N. Bioinspired polymeric materials: In-between proteins and plastics. Curr. Opin. Chem. Biol. 3, 681–687 (1999).

    Article  CAS  Google Scholar 

  23. Murphy, J. E. et al. A combinatorial approach to the discovery of efficient cationic peptoid reagents for gene delivery. Proc. Natl Acad. Sci. USA 95, 1517–1522 (1998).

    Article  CAS  Google Scholar 

  24. Kirshenbaum, K. et al. Sequence-specific polypeptoids: A diverse family of heteropolymers with stable secondary structure. Proc. Natl Acad. Sci. USA 95, 4303–4308 (1998).

    Article  CAS  Google Scholar 

  25. Lee, B. C., Chu, T. K., Dill, K. A. & Zuckermann, R. N. Biomimetic nanostructures: Creating a high-affinity zinc-binding site in a folded nonbiological polymer. J. Am. Chem. Soc. 130, 8847–8855 (2008).

    Article  CAS  Google Scholar 

  26. Zuckermann, R. N., Kerr, J. M., Kent, S. B. H. & Moos, W. H. Efficient method for the preparation of peptoids [oligo(N-substituted glycines)] by submonomer solid-phase synthesis. J. Am. Chem. Soc. 114, 10646–10647 (1992).

    Article  CAS  Google Scholar 

  27. Dill, K. A. Dominant forces in protein folding. Biochemistry 29, 7133–7155 (1990).

    Article  CAS  Google Scholar 

  28. Xiong, H. Y., Buckwalter, B. L., Shieh, H. M. & Hecht, M. H. Periodicity of polar and nonpolar amino-acids is the major determinant of secondary structure in self-assembling oligomeric peptides. Proc. Natl Acad. Sci. USA 92, 6349–6353 (1995).

    Article  CAS  Google Scholar 

  29. Minor, D. L. & Kim, P. S. Context is a major determinant of beta-sheet propensity. Nature 371, 264–267 (1994).

    Article  CAS  Google Scholar 

  30. Decher, G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277, 1232–1237 (1997).

    Article  CAS  Google Scholar 

  31. Hammond, P. T. Form and function in multilayer assembly: New applications at the nanoscale. Adv. Mater. 16, 1271–1293 (2004).

    Article  CAS  Google Scholar 

  32. Kaler, E. W., Herrington, K. L., Murthy, A. K. & Zasadzinski, J. A. N. Phase-behavior and structures of mixtures of anionic and cationic surfactants. J. Phys. Chem. 96, 6698–6707 (1992).

    Article  CAS  Google Scholar 

  33. Radler, J. O., Koltover, I., Salditt, T. & Safinya, C. R. Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275, 810–814 (1997).

    Article  CAS  Google Scholar 

  34. Hong, Y. S., Legge, R. L., Zhang, S. & Chen, P. Effect of amino acid sequence and pH on nanofiber formation of self-assembling peptides EAK16-II and EAK16-IV. Biomacromolecules 4, 1433–1442 (2003).

    Article  CAS  Google Scholar 

  35. Oda, R., Huc, I., Schmutz, M., Candau, S. J. & MacKintosh, F. C. Tuning bilayer twist using chiral counterions. Nature 399, 566–569 (1999).

    Article  CAS  Google Scholar 

  36. Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. Aromatic interactions. J. Chem. Soc. Perkin Trans. 2, 651–669 (2001).

    Article  Google Scholar 

  37. Pedersen, J. S. Form factors of block copolymer micelles with spherical, ellipsoidal and cylindrical cores. J. Appl. Cryst. 33, 637–640 (2000).

    Article  CAS  Google Scholar 

  38. Kisielowski, C. et al. Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-angstrom information limit. Microsc. Microanal. 14, 469–477 (2008).

    Article  CAS  Google Scholar 

  39. Sui, Q., Borchardt, D. & Rabenstein, D. L. Kinetics and equilibria of cis/trans isomerization of backbone amide bonds in peptoids. J. Am. Chem. Soc. 129, 12042–12048 (2007).

    Article  CAS  Google Scholar 

  40. Glaeser, R. in Physical Aspects of Electron Microscopy and Microbeam Analysis (eds Siegel, B. M. & Beaman, D. R.) Ch. 12 (Wiley, 1975).

    Google Scholar 

  41. Carullaa, N. et al. Experimental characterization of disordered and ordered aggregates populated during the process of amyloid fibril formation. Proc. Natl Acad. Sci. USA 106, 7828–7833 (2009).

    Article  Google Scholar 

  42. Giebel, L. B. et al. Screening of cyclic peptide phage libraries identifies ligands that bind streptavidin with high affinities. Biochemistry 34, 15430–15435 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Ashby, S. Whitelam and J. Schmit for helpful discussions and S. Yakovlev and K. Downing for help with electron diffraction. We acknowledge J. Holton and G. Meigs for all of their support at beamline 8.3.1 and E. Schaible and A. Hexemer for solution X-ray scattering experiments at beamline 7.3.3 at the Advanced Light Source and Claire Woo for grazing-incidence XRD data. This work was carried out at the Molecular Foundry, the National Center for Electron Microscopy and the Advanced Light Source at Lawrence Berkeley National Laboratory, all of which are supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02—05CH11231. L.T. and P.H.C. were supported by the Defense Threat Reduction Agency (IACRO-B0845281).

Author information

Authors and Affiliations

Authors

Contributions

K.T.N. and R.N.Z. designed research and wrote the paper. K.T.N., S.A.S., A.B.M., P.H.C., R.C. and L.T. carried out analytical experiments. T.K.C., R.A.M, B-C.L. and M.D.C. carried out chemical synthesis. C.K. carried out the aberration-corrected TEM. All authors discussed the results and commented on the manuscript. R.N.Z. guided all aspects of the work.

Corresponding author

Correspondence to Ronald N. Zuckermann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2594 kb)

Supplementary Information

Supplementary Movie 1 (MOV 2330 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nam, K., Shelby, S., Choi, P. et al. Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. Nature Mater 9, 454–460 (2010). https://doi.org/10.1038/nmat2742

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2742

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research