Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-performance lithium-ion anodes using a hierarchical bottom-up approach

A Corrigendum to this article was published on 19 March 2010

This article has been updated

Abstract

Si-based Li-ion battery anodes have recently received great attention, as they offer specific capacity an order of magnitude beyond that of conventional graphite. The applications of this transformative technology require synthesis routes capable of producing safe and easy-to-handle anode particles with low volume changes and stable performance during battery operation. Herein, we report a large-scale hierarchical bottom-up assembly route for the formation of Si on the nanoscale—containing rigid and robust spheres with irregular channels for rapid access of Li ions into the particle bulk. Large Si volume changes on Li insertion and extraction are accommodated by the particle’s internal porosity. Reversible capacities over five times higher than that of the state-of-the-art anodes (1,950 mA h g−1) and stable performance are attained. The synthesis process is simple, low-cost, safe and broadly applicable, providing new avenues for the rational engineering of electrode materials with enhanced conductivity and power.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of Si–C nanocomposite granule formation through hierarchical bottom-up assembly.
Figure 2: Structure of the C–Si nanocomposite synthesized through Si CVD on the annealed carbon black.
Figure 3: Structure of the C–Si nanocomposite spherical granules self-assembled during C CVD on the Si-decorated annealed carbon black.
Figure 4: Electrochemical performance of the C–Si bottom-up-assembled nanocomposite spherical granules.

Similar content being viewed by others

Change history

  • 19 March 2010

    In the version of this Article originally published, the surname of A. Magasinski was spelled incorrectly. This has been corrected in the HTML and PDF versions of this Article.

References

  1. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  Google Scholar 

  2. Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nature Mater. 7, 845–854 (2008).

    Article  CAS  Google Scholar 

  3. Kang, B. & Ceder, G. Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009).

    Article  CAS  Google Scholar 

  4. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. & Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  CAS  Google Scholar 

  5. Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech. 3, 31–35 (2008).

    Article  CAS  Google Scholar 

  6. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J. M. Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000).

    Article  CAS  Google Scholar 

  7. Taberna, L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Mater. 5, 567–573 (2006).

    Article  CAS  Google Scholar 

  8. Oumellal, Y., Rougier, A., Nazri, G. A., Tarascon, J. M. & Aymard, L. Metal hydrides for lithium-ion batteries. Nature Mater. 7, 916–921 (2008).

    Article  CAS  Google Scholar 

  9. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J. M. Searching for new anode materials for the Li-ion technology: Time to deviate from the usual path. J. Power Sources 97–8, 235–239 (2001).

    Article  Google Scholar 

  10. Huggins, R. A. Lithium alloy negative electrodes. J. Power Sources 81, 13–19 (1999).

    Article  Google Scholar 

  11. Liu, W. R., Yang, M. H., Wu, H. C., Chiao, S. M. & Wu, N. L. Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochem. Solid State Lett. 8, A100–A103 (2005).

    Article  CAS  Google Scholar 

  12. Li, J., Lewis, R. B. & Dahn, J. R. Sodium carboxymethyl cellulose—a potential binder for Si negative electrodes for Li-ion batteries. Electrochem. Solid State Lett. 10, A17–A20 (2007).

    Article  CAS  Google Scholar 

  13. Beattie, S. D., Larcher, D., Morcrette, M., Simon, B. & Tarascon, J. M. Si electrodes for Li-ion batteries—a new way to look at an old problem. J. Electrochem. Soc. 155, A158–A163 (2008).

    Article  CAS  Google Scholar 

  14. Mazouzi, D., Lestriez, B., Roue, L. & Guyomard, D. Silicon composite electrode with high capacity and long cycle life. Electrochem. Solid State Lett. 12, A215–A218 (2009).

    Article  CAS  Google Scholar 

  15. Obrovac, M. N. & Krause, L. J. Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103–A108 (2007).

    Article  CAS  Google Scholar 

  16. Cui, L. F., Ruffo, R., Chan, C. K., Peng, H. L. & Cui, Y. Crystalline-amorphous core–shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9, 491–495 (2009).

    Article  CAS  Google Scholar 

  17. Kim, H. & Cho, J. Superior lithium electroactive mesoporous Si–carbon core–shell nanowires for lithium battery anode material. Nano Lett. 8, 3688–3691 (2008).

    Article  CAS  Google Scholar 

  18. Oberdorster, G., Stone, V. & Donaldson, K. Toxicology of nanoparticles: A historical perspective. Nano Toxicol. 1, 2–25 (2007).

    CAS  Google Scholar 

  19. Stern, S. T. & McNeil, S. E. Nanotechnology safety concerns revisited. Toxicol. Sci. 101, 4–21 (2008).

    Article  CAS  Google Scholar 

  20. Xing, W. B., Wilson, A. M., Eguchi, K., Zank, G. & Dahn, J. R. Pyrolyzed polysiloxanes for use as anode materials in lithium-ion batteries. J. Electrochem. Soc. 144, 2410–2416 (1997).

    Article  CAS  Google Scholar 

  21. Wang, C. S., Wu, G. T., Zhang, X. B., Qi, Z. F. & Li, W. Z. Lithium insertion in carbon–silicon composite materials produced by mechanical milling. J. Electrochem. Soc. 145, 2751–2758 (1998).

    Article  CAS  Google Scholar 

  22. Yoshio, M., Kugino, S. & Dimov, N. Electrochemical behaviours of silicon based anode material. J. Power Sources 153, 375–379 (2006).

    Article  CAS  Google Scholar 

  23. Zhang, Y. et al. Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries. Electrochim. Acta 51, 4994–5000 (2006).

    Article  CAS  Google Scholar 

  24. Dimov, N., Kugino, S. & Yoshio, A. Mixed silicon–graphite composites as anode material for lithium ion batteries influence of preparation conditions on the properties of the material. J. Power Sources 136, 108–114 (2004).

    Article  CAS  Google Scholar 

  25. Liu, Y. et al. Morphology-stable silicon-based composite for Li-intercalation. Solid State Ion. 168, 61–68 (2004).

    Article  CAS  Google Scholar 

  26. Lee, H. Y. & Lee, S. M. Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries. Electrochem. Commun. 6, 465–469 (2004).

    Article  CAS  Google Scholar 

  27. Larcher, D. et al. Si-containing disordered carbons prepared by pyrolysis of pitch polysilane blends: Effect of oxygen and sulfur. Solid State Ion. 122, 71–83 (1999).

    Article  CAS  Google Scholar 

  28. Timmons, A. et al. Studies of Si1−xCx electrode materials prepared by high-energy mechanical milling and combinatorial sputter deposition. J. Electrochem. Soc. 154, A865–A874 (2007).

    Article  CAS  Google Scholar 

  29. Kasavajjula, U., Wang, C. S. & Appleby, A. J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163, 1003–1039 (2007).

    Article  CAS  Google Scholar 

  30. Yen, Y. C., Chao, S. C., Wu, H. C. & Wu, N. L. Study on solid–electrolyte-interphase of Si and C-coated Si electrodes in lithium cells. J. Electrochem. Soc. 156, A95–A102 (2009).

    Article  CAS  Google Scholar 

  31. Baughman, R. H., Zakhidov, A. A. & de Heer, W. A. Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002).

    Article  CAS  Google Scholar 

  32. Huggins, R. A. & Nix, W. D. Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57–63 (2000).

    Article  CAS  Google Scholar 

  33. Ji, X. L., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Mater. 8, 500–506 (2009).

    Article  CAS  Google Scholar 

  34. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  CAS  Google Scholar 

  35. Boal, A. K. et al. Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 404, 746–748 (2000).

    Article  CAS  Google Scholar 

  36. Philp, D. & Stoddart, J. F. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Edn 35, 1155–1196 (1996).

    Article  CAS  Google Scholar 

  37. Iveson, S. M., Litster, J. D., Hapgood, K. & Ennis, B. J. Nucleation, growth and breakage phenomena in agitated wet granulation processes: A review. Powder Technol. 117, 3–39 (2001).

    Article  CAS  Google Scholar 

  38. Nijhawan, S. et al. An experimental and numerical study of particle nucleation and growth during low-pressure thermal decomposition of silane. J. Aerosol. Sci. 34, 691–711 (2003).

    Article  CAS  Google Scholar 

  39. Wissler, M. Graphite and carbon powders for electrochemical applications. J. Power Sources 156, 142–150 (2006).

    Article  CAS  Google Scholar 

  40. Barsukov, I. V., Gallego, M. A. & Doninger, J. E. Novel materials for electrochemical power sources—introduction of PUREBLACK((R)) carbons. J. Power Sources 153, 288–299 (2006).

    Article  CAS  Google Scholar 

  41. Portet, C., Yushin, G. & Gogotsi, Y. Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45, 2511–2518 (2007).

    Article  CAS  Google Scholar 

  42. Seo, A., Holm, P., Kristensen, H. G. & Schaefer, T. The preparation of agglomerates containing solid dispersions of diazepam by melt agglomeration in a high shear mixer. Int. J. Pharm. 259, 161–171 (2003).

    Article  CAS  Google Scholar 

  43. Becker, A. & Huttinger, K. J. Chemistry and kinetics of chemical vapour deposition of pyrocarbon—III—pyrocarbon deposition from propylene and benzene in the low temperature regime. Carbon 36, 201–211 (1998).

    Article  CAS  Google Scholar 

  44. Zakhidov, A. A. et al. Carbon structures with three-dimensional periodicity at optical wavelengths. Science 282, 897–901 (1998).

    Article  CAS  Google Scholar 

  45. Vlasov, Y. A., Bo, X. Z., Sturm, J. C. & Norris, D. J. On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289–293 (2001).

    Article  CAS  Google Scholar 

  46. Kroutvar, M. et al. Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81–84 (2004).

    Article  CAS  Google Scholar 

  47. Keren, K., Berman, R. S., Buchstab, E., Sivan, U. & Braun, E. DNA-templated carbon nanotube field-effect transistor. Science 302, 1380–1382 (2003).

    Article  CAS  Google Scholar 

  48. Jiang, C. Y., Markutsya, S., Pikus, Y. & Tsukruk, V. V. Freely suspended nanocomposite membranes as highly sensitive sensors. Nature Mater. 3, 721–728 (2004).

    Article  CAS  Google Scholar 

  49. Rybin, M. V. et al. Fano resonance between Mie and Bragg scattering in photonic crystals. Phys. Rev. Lett. 103, 023901 (2009).

    Article  CAS  Google Scholar 

  50. Rolison, D. R. Catalytic nanoarchitectures—the importance of nothing and the unimportance of periodicity. Science 299, 1698–1701 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the partial support from NASA through an SBIR grant NNX09CD29P 2008-1. We thank A. Alexeev, I. Luzinov, T. Fuller, B. Zdyrko, I. Barsukov, F. Henry, P. Wu, S. Boukhalfa, W. Lu, J. Benson and S. Gillain for valuable discussions or experimental assistance.

Author information

Authors and Affiliations

Authors

Contributions

A.M. carried out experiments, analysed and discussed data and wrote the paper; P.D. carried out experiments; B.H. carried out experiments, discussed data and wrote the paper; A.K. carried out experiments; J.A. discussed data and provided technical support; G.Y. conceived, designed and carried out experiments, analysed and discussed data and wrote the paper.

Corresponding author

Correspondence to G. Yushin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. S1

Supplementary Information (PDF 585 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magasinski, A., Dixon, P., Hertzberg, B. et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nature Mater 9, 353–358 (2010). https://doi.org/10.1038/nmat2725

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2725

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing