High-performance lithium-ion anodes using a hierarchical bottom-up approach

Journal name:
Nature Materials
Volume:
9,
Pages:
353–358
Year published:
DOI:
doi:10.1038/nmat2725
Received
Accepted
Published online
Corrected online

Abstract

Si-based Li-ion battery anodes have recently received great attention, as they offer specific capacity an order of magnitude beyond that of conventional graphite. The applications of this transformative technology require synthesis routes capable of producing safe and easy-to-handle anode particles with low volume changes and stable performance during battery operation. Herein, we report a large-scale hierarchical bottom-up assembly route for the formation of Si on the nanoscale—containing rigid and robust spheres with irregular channels for rapid access of Li ions into the particle bulk. Large Si volume changes on Li insertion and extraction are accommodated by the particle’s internal porosity. Reversible capacities over five times higher than that of the state-of-the-art anodes (1,950mAhg−1) and stable performance are attained. The synthesis process is simple, low-cost, safe and broadly applicable, providing new avenues for the rational engineering of electrode materials with enhanced conductivity and power.

At a glance

Figures

  1. Schematic of Si-C nanocomposite granule formation through hierarchical bottom-up assembly.
    Figure 1: Schematic of Si–C nanocomposite granule formation through hierarchical bottom-up assembly.

    ac, Annealed carbon-black dendritic particles (a) are coated by Si nanoparticles (b) and then assembled into rigid spheres with open interconnected internal channels during C deposition (c).

  2. Structure of the C-Si nanocomposite synthesized through Si CVD on the annealed carbon black.
    Figure 2: Structure of the C–Si nanocomposite synthesized through Si CVD on the annealed carbon black.

    ac, TEM micrographs recorded at different magnifications. The black arrows in a point to spherical amorphous Si nanoparticles, and the white arrows point to the edges of the graphitized carbon-black backbone chain. The size of the inset in a is 800nm×800nm. The high-resolution TEM micrograph (c) shows the highly ordered graphitic structure of the carbon-black surface with a (002) interplanar spacing of 3.34Å and the amorphous structure of Si. d, EDX spectrum of the composite showing the C and Si Kα lines, O and Cu sample holder lines. e, XRD spectra of Si-coated carbon black before and after C deposition at 700°C for 30min. f, High-resolution TEM micrograph of a Si nanoparticle crystallized after the exposure to 700°C.

  3. Structure of the C-Si nanocomposite spherical granules self-assembled during C CVD on the Si-decorated annealed carbon black.
    Figure 3: Structure of the C–Si nanocomposite spherical granules self-assembled during C CVD on the Si-decorated annealed carbon black.

    ad, SEM micrographs recorded at different magnifications. The white arrows in d point to C-coated Si nanoparticles visible on the surface of the granules. e, Cumulative size distribution of spherical granules synthesized at 700°C. f, N2 sorption isotherms on the surface Si-decorated annealed carbon black before and after C CVD. g, Barrett–Joyner–Halenda cumulative SSA of Si-decorated annealed carbon black before and after C CVD. h, High-magnification SEM micrograph of the surface of spherical granules produced during C coating of pure carbon black shown for comparison with d.

  4. Electrochemical performance of the C-Si bottom-up-assembled nanocomposite spherical granules.
    Figure 4: Electrochemical performance of the C–Si bottom-up-assembled nanocomposite spherical granules.

    a, Reversible Li deintercalation capacity and Coulombic efficiency of the C–Si granule electrode versus cycle number in comparison with the theoretical capacity of graphite. b, Galvanostatic charge–discharge profiles of the C–Si granule electrode at rates of ~C/20, 1C and 8C in comparison with that of the annealed carbon-black and commercial graphite-based electrodes between 0 and 1.1V. c, Differential capacity curves of the C–Si granule electrode in the potential window of 0–1.1V collected at a rate of 0.025mVs−1. All electrochemical measurements (ac) were carried out at room temperature in two-electrode 2016 coin-type half-cells. d, SEM micrograph of a C–Si nanocomposite granule after electrochemical cycling.

Change history

Corrected online 19 March 2010
In the version of this Article originally published, the surname of A. Magasinski was spelled incorrectly. This has been corrected in the HTML and PDF versions of this Article.

References

  1. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652657 (2008).
  2. Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nature Mater. 7, 845854 (2008).
  3. Kang, B. & Ceder, G. Battery materials for ultrafast charging and discharging. Nature 458, 190193 (2009).
  4. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. & Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366377 (2005).
  5. Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowiresNature Nanotech. 3, 3135 (2008).
  6. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J. M. Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteriesNature 407, 496499 (2000).
  7. Taberna, L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Mater. 5, 567573 (2006).
  8. Oumellal, Y., Rougier, A., Nazri, G. A., Tarascon, J. M. & Aymard, L. Metal hydrides for lithium-ion batteries. Nature Mater. 7, 916921 (2008).
  9. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J. M. Searching for new anode materials for the Li-ion technology: Time to deviate from the usual path. J. Power Sources 97–8, 235239 (2001).
  10. Huggins, R. A. Lithium alloy negative electrodes. J. Power Sources 81, 1319 (1999).
  11. Liu, W. R., Yang, M. H., Wu, H. C., Chiao, S. M. & Wu, N. L. Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochem. Solid State Lett. 8, A100A103 (2005).
  12. Li, J., Lewis, R. B. & Dahn, J. R. Sodium carboxymethyl cellulose—a potential binder for Si negative electrodes for Li-ion batteries. Electrochem. Solid State Lett. 10, A17A20 (2007).
  13. Beattie, S. D., Larcher, D., Morcrette, M., Simon, B. & Tarascon, J. M. Si electrodes for Li-ion batteries—a new way to look at an old problem. J. Electrochem. Soc. 155, A158A163 (2008).
  14. Mazouzi, D., Lestriez, B., Roue, L. & Guyomard, D. Silicon composite electrode with high capacity and long cycle life. Electrochem. Solid State Lett. 12, A215A218 (2009).
  15. Obrovac, M. N. & Krause, L. J. Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103A108 (2007).
  16. Cui, L. F., Ruffo, R., Chan, C. K., Peng, H. L. & Cui, Y. Crystalline-amorphous core–shell silicon nanowires for high capacity and high current battery electrodesNano Lett. 9, 491495 (2009).
  17. Kim, H. & Cho, J. Superior lithium electroactive mesoporous Si–carbon core–shell nanowires for lithium battery anode material. Nano Lett. 8, 36883691 (2008).
  18. Oberdorster, G., Stone, V. & Donaldson, K. Toxicology of nanoparticles: A historical perspective. Nano Toxicol. 1, 225 (2007).
  19. Stern, S. T. & McNeil, S. E. Nanotechnology safety concerns revisited. Toxicol. Sci. 101, 421 (2008).
  20. Xing, W. B., Wilson, A. M., Eguchi, K., Zank, G. & Dahn, J. R. Pyrolyzed polysiloxanes for use as anode materials in lithium-ion batteries. J. Electrochem. Soc. 144, 24102416 (1997).
  21. Wang, C. S., Wu, G. T., Zhang, X. B., Qi, Z. F. & Li, W. Z. Lithium insertion in carbon–silicon composite materials produced by mechanical milling. J. Electrochem. Soc. 145, 27512758 (1998).
  22. Yoshio, M., Kugino, S. & Dimov, N. Electrochemical behaviours of silicon based anode material. J. Power Sources 153, 375379 (2006).
  23. Zhang, Y. et al. Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries. Electrochim. Acta 51, 49945000 (2006).
  24. Dimov, N., Kugino, S. & Yoshio, A. Mixed silicon–graphite composites as anode material for lithium ion batteries influence of preparation conditions on the properties of the material. J. Power Sources 136, 108114 (2004).
  25. Liu, Y. et al. Morphology-stable silicon-based composite for Li-intercalation. Solid State Ion. 168, 6168 (2004).
  26. Lee, H. Y. & Lee, S. M. Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries. Electrochem. Commun. 6, 465469 (2004).
  27. Larcher, D. et al. Si-containing disordered carbons prepared by pyrolysis of pitch polysilane blends: Effect of oxygen and sulfur. Solid State Ion. 122, 7183 (1999).
  28. Timmons, A. et al. Studies of Si1−xCx electrode materials prepared by high-energy mechanical milling and combinatorial sputter deposition. J. Electrochem. Soc. 154, A865A874 (2007).
  29. Kasavajjula, U., Wang, C. S. & Appleby, A. J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163, 10031039 (2007).
  30. Yen, Y. C., Chao, S. C., Wu, H. C. & Wu, N. L. Study on solid–electrolyte-interphase of Si and C-coated Si electrodes in lithium cells. J. Electrochem. Soc. 156, A95A102 (2009).
  31. Baughman, R. H., Zakhidov, A. A. & de Heer, W. A. Carbon nanotubes—the route toward applications. Science 297, 787792 (2002).
  32. Huggins, R. A. & Nix, W. D. Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 5763 (2000).
  33. Ji, X. L., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Mater. 8, 500506 (2009).
  34. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 24182421 (2002).
  35. Boal, A. K. et al. Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 404, 746748 (2000).
  36. Philp, D. & Stoddart, J. F. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Edn 35, 11551196 (1996).
  37. Iveson, S. M., Litster, J. D., Hapgood, K. & Ennis, B. J. Nucleation, growth and breakage phenomena in agitated wet granulation processes: A review. Powder Technol. 117, 339 (2001).
  38. Nijhawan, S. et al. An experimental and numerical study of particle nucleation and growth during low-pressure thermal decomposition of silane. J. Aerosol. Sci. 34, 691711 (2003).
  39. Wissler, M. Graphite and carbon powders for electrochemical applications. J. Power Sources 156, 142150 (2006).
  40. Barsukov, I. V., Gallego, M. A. & Doninger, J. E. Novel materials for electrochemical power sources—introduction of PUREBLACK((R)) carbons. J. Power Sources 153, 288299 (2006).
  41. Portet, C., Yushin, G. & Gogotsi, Y. Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45, 25112518 (2007).
  42. Seo, A., Holm, P., Kristensen, H. G. & Schaefer, T. The preparation of agglomerates containing solid dispersions of diazepam by melt agglomeration in a high shear mixer. Int. J. Pharm. 259, 161171 (2003).
  43. Becker, A. & Huttinger, K. J. Chemistry and kinetics of chemical vapour deposition of pyrocarbon—III—pyrocarbon deposition from propylene and benzene in the low temperature regime. Carbon 36, 201211 (1998).
  44. Zakhidov, A. A. et al. Carbon structures with three-dimensional periodicity at optical wavelengths. Science 282, 897901 (1998).
  45. Vlasov, Y. A., Bo, X. Z., Sturm, J. C. & Norris, D. J. On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289293 (2001).
  46. Kroutvar, M. et al. Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 8184 (2004).
  47. Keren, K., Berman, R. S., Buchstab, E., Sivan, U. & Braun, E. DNA-templated carbon nanotube field-effect transistor. Science 302, 13801382 (2003).
  48. Jiang, C. Y., Markutsya, S., Pikus, Y. & Tsukruk, V. V. Freely suspended nanocomposite membranes as highly sensitive sensors. Nature Mater. 3, 721728 (2004).
  49. Rybin, M. V. et al. Fano resonance between Mie and Bragg scattering in photonic crystals. Phys. Rev. Lett. 103, 023901 (2009).
  50. Rolison, D. R. Catalytic nanoarchitectures—the importance of nothing and the unimportance of periodicity. Science 299, 16981701 (2003).

Download references

Author information

Affiliations

  1. School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30326, USA

    • A. Magasinski,
    • P. Dixon,
    • B. Hertzberg &
    • G. Yushin
  2. Materials Science Center & Materials Science Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

    • A. Kvit
  3. Superior Graphite, Chicago, Illinois 60606, USA

    • J. Ayala
  4. Streamline Nanotechnologies Inc., Atlanta, Georgia 30326, USA

    • G. Yushin

Contributions

A.M. carried out experiments, analysed and discussed data and wrote the paper; P.D. carried out experiments; B.H. carried out experiments, discussed data and wrote the paper; A.K. carried out experiments; J.A. discussed data and provided technical support; G.Y. conceived, designed and carried out experiments, analysed and discussed data and wrote the paper.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Supplementary information

PDF files

  1. Supplementary Fig. S1 (588 KB)

    Supplementary Information

Additional data