Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plastic-deformation mechanism in complex solids

Abstract

In simple crystalline materials, plastic deformation mostly takes place by the movement of dislocations. Although the underlying mechanisms in these materials are well explored, in complex metallic alloys—crystalline solids containing up to thousands of atoms per unit cell—the defects and deformation mechanisms remain essentially unknown. Owing to the large lattice parameters of these materials, extended dislocation concepts are required. We investigated a typical complex metallic alloy with 156 atoms per unit cell using atomic-resolution aberration-corrected transmission electron microscopy. We found a highly complex deformation mechanism, based on the movement of a dislocation core mediating strain and separate escort defects. On deformation, the escort defects move along with the dislocation core and locally transform the material structure for the latter. This mechanism implies the coordinated movement of hundreds of atoms per elementary glide step, and nevertheless can be described by simple rearrangement of basic structural subunits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of the T–Al–Mn–Pd structure and electron micrograph.
Figure 2: High-resolution electron micrographs of a complex defect structure at different magnifications.
Figure 3: Schematic Burgers circuit around the dislocation core.
Figure 4: Structural implications of bow-tie-shaped tiles and the dislocation core on a tiling representation of the T-phase structure.

Similar content being viewed by others

References

  1. Hirth, J. P. & Lothe, J. Theory of dislocations. (McGraw-Hill Series in Materials Science and Engineering, McGraw-Hill, 1968).

  2. Kronberg, M. L. Plastic deformation of single crystals of sapphire—basal slip and twinning. Acta Metall. 5, 507–524 (1957).

    Article  CAS  Google Scholar 

  3. Allen, C. W. & Liao, K. C. Dislocation models for shear transformation. Phys. Status Solidi A 74, 673–681 (1982).

    Article  CAS  Google Scholar 

  4. Hazzledine, P. M. & Pirouz, P. Synchroshear transformations in Laves phases. Scripta. Met. 28, 1277–1282 (1993).

    Article  CAS  Google Scholar 

  5. Chisholm, M. F., Kumar, S. & Hazzledine, P. Dislocations in complex materials. Science 307, 701–703 (2005).

    Article  CAS  Google Scholar 

  6. Urban, K. & Feuerbacher, M. Structurally complex alloy phases. J. Non-Cryst. Sol. 334, 143–150 (2004).

    Article  Google Scholar 

  7. Andersson, M., Feuerbacher, M. & Rapp, Ö. Magnetoresistance and Hall effect of the complex metal alloy Mg2Al3 . Phys. Rev. B 78, 024201 (2008).

    Article  Google Scholar 

  8. Bauer, E. et al. Superconductivity in the complex metallic alloy beta-Al3Mg2 . Phys. Rev. B 76, 014528 (2007).

    Article  Google Scholar 

  9. Jeglic, P. et al. NMR evidence for Co–Al–Co molecular groups trapped in cages of Co4Al13 . J. Alloys Compd. 480, 141–143 (2009).

    Article  CAS  Google Scholar 

  10. Dolinsek, J. et al. Broken ergodicity, memory effect and rejuvenation in Taylor-phase and decagonal Al3(Mn,Pd,Fe) complex intermetallics. Phys. Rev. B 77, 064430 (2008).

    Article  Google Scholar 

  11. Roitsch, S., Heggen, M., Lipinska-Chwalek, M. & Feuerbacher, M. Single-crystal plasticity of the complex metallic alloy phase beta-Al–Mg. Intermetallics 15, 833–837 (2007).

    Article  CAS  Google Scholar 

  12. Klein, H., Feuerbacher, M., Schall, P. & Urban, K. Novel type of dislocation in an Al–Pd–Mn quasicrystal approximant. Phys. Rev. Lett. 82, 3468–3471 (1999).

    Article  CAS  Google Scholar 

  13. Feuerbacher, M. & Heggen, M. On the concept of metadislocations in complex metallic alloys. Phil. Mag. 86, 935–944 (2006).

    Article  CAS  Google Scholar 

  14. Taylor, M. A. Space group of MnAl3 . Acta Crystallogr. 14, 84 (1961).

    Article  Google Scholar 

  15. Hiraga, K., Kaneko, M., Matsuo, Y. & Hashimoto, S. The structure of Al3Mn—close relationship to decagonal quasi-crystals. Phil. Mag. B 67, 193–205 (1993).

    Article  CAS  Google Scholar 

  16. Klein, H. et al. The T–Al3(Mn,Pd) quasicrystalline approximant: Chemical order and phason defects. Phil. Mag. Lett. 75, 197–208 (1997).

    Article  CAS  Google Scholar 

  17. Nellist, P. D. & Pennycook, S. J. The principles and interpretation of annular dark-field atomic Z-contrast imaging. Adv. Imaging Electron Phys. 113, 147–203 (2000).

    Article  Google Scholar 

  18. Robinson, K. The determination of the crystal structure of Ni4Mn11Al60 . Acta Crystallogr. 7, 494–497 (1954).

    Article  CAS  Google Scholar 

  19. Shi, N. C., Li, X. Z., Ma, Z. S. & Kuo, K. H. Crystalline phases related to a decagonal quasi-crystal. Acta Crystallogr. B 50, 22–30 (1994).

    Article  Google Scholar 

  20. Balanetskyy, S., Meisterernst, G., Heggen, M. & Feuerbacher, M. Reinvestigation of the Al–Mn–Pd alloy system in the vicinity of the T- and R-phases. Intermetallics 16, 71–87 (2008).

    Article  CAS  Google Scholar 

  21. Cottrell, H. Dislocations and Plastic Flow in Crystals (Clarendon Press, 1953).

    Google Scholar 

  22. Hemker, K. J., Mills, M. J. & Nix, W. D. An investigation of the mechanisms that control intermediate temperature creep of Ni3Al. Acta Metall. Mater. 39, 1901–1913 (1991).

    Article  CAS  Google Scholar 

  23. Beraha, L., Duneau, M., Klein, H. & Audier, M. Phason defects in Al–Pd–Mn approximant phases: Another example. Phil. Mag. A 78, 345–372 (1998).

    Article  CAS  Google Scholar 

  24. Heggen, M. & Feuerbacher, M. Metadislocation arrangements in the complex metallic alloy ξ′-Al–Pd–Mn. Phil. Mag. 86, 985–990 (2006).

    Article  CAS  Google Scholar 

  25. Porter, D. A. & Easterling, K. E. Phase Transformations in Metals and Alloys (Chapman & Hall, 1992).

    Book  Google Scholar 

  26. Feuerbacher, M., Balanetskyy, S. & Heggen, M. Novel metadislocation variants in orthorhombic Al–Pd–Fe. Acta Mater. 56, 1852–1859 (2008).

    Article  Google Scholar 

  27. Klein, H. & Feuerbacher, M. Structure of dislocations and stacking faults in the complex intermetallic ξ′-Al–Pd–Mn. Phil. Mag. 83, 4103–4122 (2003).

    Article  CAS  Google Scholar 

  28. Roitsch, S., Heggen, M. & Feuerbacher, M. Plastic deformation properties of the complex metallic alloy phase μ-Al–Mn. Intermetallics (in the press).

  29. Roitsch, S. Microstructural and macroscopic aspects of the plasticity of complex metallic alloys. Thesis, RWTH-Aachen, full text at <http://hdl.handle.net/2128/3229> (2008).

  30. Heggen, M., Houben, L. & Feuerbacher, M. Metadislocations in the orthorhombic structurally complex alloy Al13Co4 . Phil. Mag. 88, 2333–2338 (2008).

    Article  CAS  Google Scholar 

  31. Heggen, M., Deng, D. & Feuerbacher, M. Plastic deformation properties of the orthorhombic complex metallic alloy phase Al13Co4 . Intermetallics 15, 1425–1431 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Thomas and M. Schmidt for producing the materials and J. Barthel for carrying out the HAADF-STEM image simulation. This work was supported by the 6th Framework EU Network of Excellence ‘Complex Metallic Alloys’ (Contract No. NMP3-CT-2005-500140) and the Deutsche Forschungsgemeinschaft, (PAK 36).

Author information

Authors and Affiliations

Authors

Contributions

M.H. and M.F. contributed equally to the design of the experiment, the conduction of the deformation tests and the preparation of the manuscript. The microstructural investigations were carried out by L.H. and M.H. and the micrographs were analysed by M.H. M.F. developed the sample material and supervised the work.

Corresponding author

Correspondence to M. Heggen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 891 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heggen, M., Houben, L. & Feuerbacher, M. Plastic-deformation mechanism in complex solids. Nature Mater 9, 332–336 (2010). https://doi.org/10.1038/nmat2713

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2713

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing