Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer

Abstract

Methods to manipulate the magnetization of ferromagnets by means of local electric fields1,2,3 or current-induced spin transfer torque4,5,6 allow the design of integrated spintronic devices with reduced dimensions and energy consumption compared with conventional magnetic field actuation7,8. An alternative way to induce a spin torque using an electric current has been proposed based on intrinsic spin–orbit magnetic fields9,10 and recently realized in a strained low-temperature ferromagnetic semiconductor11. Here we demonstrate that strong magnetic fields can be induced in ferromagnetic metal films lacking structure inversion symmetry through the Rashba effect. Owing to the combination of spin–orbit and exchange interactions, we show that an electric current flowing in the plane of a Co layer with asymmetric Pt and AlOx interfaces produces an effective transverse magnetic field of 1 T per 108 A cm−2. Besides its fundamental significance, the high efficiency of this process makes it a realistic candidate for room-temperature spintronic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microscopic origin of the sd-mediated Rashba field and experimental geometry.
Figure 2: Differential Kerr microscopy images recorded after current pulse injection.
Figure 3: Percentage of wires that present reversed magnetic domains after the injection of a current pulse as a function of current density and external field.
Figure 4: Current density to magnetic field relationship.

Similar content being viewed by others

References

  1. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    Article  CAS  Google Scholar 

  2. Weisheit, M. et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007).

    Article  CAS  Google Scholar 

  3. Chu, Y.-H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nature Mater. 7, 478–482 (2008).

    Article  CAS  Google Scholar 

  4. Myers, E. B., Ralph, D. C., Katine, J. A., Louie, R. N. & Buhrman, R. A. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

    Article  CAS  Google Scholar 

  5. Wegrowe, J.-E., Kelly, D., Jaccard, Y., Guittienne, Ph. & Ansermet, J.-Ph. Current-induced magnetization reversal in magnetic nanowires. Europhys. Lett. 45, 626–632 (1999).

    Article  Google Scholar 

  6. Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    Article  CAS  Google Scholar 

  7. Chappert, C., Fert, A. & Nguyen Van Dau, F. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007).

    Article  CAS  Google Scholar 

  8. Katine, J. A. & Fullerton, E. E. Device implications of spin-transfer torques. J. Magn. Magn. Mater. 320, 1217–1226 (2008).

    Article  CAS  Google Scholar 

  9. Manchon, A. & Zhang, S. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys. Rev. B 78, 212405 (2008).

    Article  Google Scholar 

  10. Manchon, A. & Zhang, S. Theory of spin torque due to spin–orbit coupling. Phys. Rev. B 79, 094422 (2009).

    Article  Google Scholar 

  11. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nature Phys. 5, 656–659 (2009).

    Article  CAS  Google Scholar 

  12. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  CAS  Google Scholar 

  13. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  CAS  Google Scholar 

  14. Dresselhaus, G. Spin–orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955).

    Article  CAS  Google Scholar 

  15. Bychkov, Yu. A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. J. Exp. Theor. Phys. Lett. 39, 78–81 (1984).

    Google Scholar 

  16. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    Article  Google Scholar 

  17. Inoue, J., Bauer, G. E. W. & Molenkamp, L. W. Diffuse transport and spin accumulation in a Rashba two-dimensional electron gas. Phys. Rev. B 67, 033104 (2003).

    Article  Google Scholar 

  18. Silov, A. Yu. et al. Current-induced spin polarization at a single heterojunction. Appl. Phys. Lett. 85, 5929–5931 (2004).

    Article  CAS  Google Scholar 

  19. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Current-induced spin polarization in strained semiconductors. Phys. Rev. Lett. 93, 176601 (2004).

    Article  CAS  Google Scholar 

  20. Awschalom, D. & Samarth, N. Spintronics without magnetism. Physics 2, 50 (2009).

    Article  Google Scholar 

  21. Adagideli, I., Bauer, G. E. W. & Halperin, B. I. Detection of current-induced spins by ferromagnetic contacts. Phys. Rev. Lett. 97, 256601 (2006).

    Article  CAS  Google Scholar 

  22. Obata, K. & Tatara, G. Current-induced domain wall motion in Rashba spin–orbit system. Phys Rev. B 77, 214429 (2008).

    Article  Google Scholar 

  23. Cardona, M., Christensen, N. E. & Fasol, G. Relativistic band structure and spin–orbit splitting of zinc-blende-type semiconductors. Phys. Rev. B 38, 1806–1827 (1988).

    Article  CAS  Google Scholar 

  24. LaShell, S., McDougall, B. A. & Jensen, E. Spin splitting of an Au(111) surface state band observed with angle resolved photoelectron spectroscopy. Phys. Rev. Lett. 77, 3419–3422 (1996).

    Article  CAS  Google Scholar 

  25. Henk, J., Hoesch, M., Osterwalder, J., Ernst, A. & Bruno, P. Spin–orbit coupling in the L-gap surface states of Au(111): Spin-resolved photoemission experiments and first-principles calculations. J. Phys.: Condens. Matter 16, 7581–7597 (2004).

    CAS  Google Scholar 

  26. Krupin, O. et al. Rashba effect at magnetic metal surfaces. Phys. Rev. B 71, 201403(R) (2005).

    Article  Google Scholar 

  27. Rodmacq, B., Manchon, A., Ducruet, C., Auffret, S. & Dieny, B. Influence of thermal annealing on the perpendicular magnetic anisotropy of Pt/Co/AlOx trilayers. Phys. Rev. B 79, 024423 (2009).

    Article  Google Scholar 

  28. Gambardella, P. et al. Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300, 1130–1133 (2003).

    Article  CAS  Google Scholar 

  29. Ast, C. R. et al. Giant spin splitting through surface alloying. Phys. Rev. Lett. 98, 186807 (2007).

    Article  Google Scholar 

  30. Miron, I. M. et al. Domain wall spin torquemeter. Phys. Rev. Lett. 102, 137202 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Bachtold and S. O. Valenzuela for critically reading the manuscript and useful discussions. This work was supported by the European Research Council (Starting Grant 203239). Samples were patterned at the NANOFAB facility of the Institut Néel (CNRS).

Author information

Authors and Affiliations

Authors

Contributions

I.M.M., G.G., A.S. and P.G. designed the experiment; I.M.M., G.G., S.A. and B.R. fabricated the samples. I.M.M. carried out the experiments with help from S.P. and J.V.; I.M.M. and P.G. analysed the data and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ioan Mihai Miron.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 474 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihai Miron, I., Gaudin, G., Auffret, S. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nature Mater 9, 230–234 (2010). https://doi.org/10.1038/nmat2613

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2613

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing