Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Many-body effects in electronic bandgaps of carbon nanotubes measured by scanning tunnelling spectroscopy

Abstract

Single-walled carbon nanotubes provide an ideal system for studying the properties of one-dimensional (1D) materials, where strong electron–electron interactions are expected1. Optical measurements have recently reported the existence of excitons in semiconducting nanotubes, revealing the importance of many-body effects2,3,4. Surprisingly, pioneering electronic structure calculations5,6,7 and scanning tunnelling spectroscopy (STS) experiments8,9,10 report the same gap values as optical experiments. Here, an experimental STS study of the bandgap of single-walled semiconducting nanotubes, demonstrates a continuous transition from the gap reduced by the screening resulting from the metal substrate to the intrinsic gap dominated by many-body interactions. These results provide a deeper knowledge of many-body interactions in these 1D systems and a better understanding of their electronic properties, which is a prerequisite for any application of nanotubes in the ultimate device miniaturization for molecular electronics11,12, or spintronics13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STM/STS of a bundle of tubes on the Au(111) metallic surface.
Figure 2: Gap models as a function of nanotube diameters.
Figure 3: First E11s and second E22s sub-band energy separation as a function of the apparent height (ha) of the tubes.
Figure 4: Comparison of nanotube gap predicted or measured by different methods.

Similar content being viewed by others

References

  1. Charlier, J. C., Blase, X. & Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, 677–732 (2007).

    Article  CAS  Google Scholar 

  2. Scholes, G. D. & Rumbles, G. Excitons in nanoscale systems. Nature Mater. 5, 683–696 (2006).

    Article  CAS  Google Scholar 

  3. Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005).

    Article  CAS  Google Scholar 

  4. Dukovic, G. et al. Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes. Nano Lett. 5, 2314–2318 (2005).

    Article  CAS  Google Scholar 

  5. Hamada, N., Sawada, S. I. & Oshiyama, A. New one-dimensional conductors: Graphitic microtubules. Phys. Rev. Lett. 68, 1579–1581 (1992).

    Article  CAS  Google Scholar 

  6. Mintmire, J. W., Dunlap, B. I. & White, C. T. Are fullerene tubules metallic? Phys. Rev. Lett. 68, 631–634 (1992).

    Article  CAS  Google Scholar 

  7. Saito, R., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Electronic structure of graphene tubules based on C60 . Phys. Rev. B 46, 1804–1811 (1992).

    Article  CAS  Google Scholar 

  8. Wildöer, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E. & Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998).

    Article  Google Scholar 

  9. Odom, T. W., Huang, J. L., Kim, P. & Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391, 62–64 (1998).

    Article  CAS  Google Scholar 

  10. Venema, L. C., Meunier, V., Lambin, P. & Dekker, C. Atomic structure of carbon nanotubes from scanning tunneling microscopy. Phys. Rev. B 61, 2991–2996 (2000).

    Article  CAS  Google Scholar 

  11. Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

    Article  CAS  Google Scholar 

  12. Yao, Z., Postma, H. W. C., Balents, L. & Dekker, C. Carbon nanotube intramolecular junctions. Nature 402, 273–276 (1999).

    Article  CAS  Google Scholar 

  13. Hueso, L. E. et al. Transformation of spin information into large electrical signals using carbon nanotubes. Nature 445, 410–413 (2007).

    Article  CAS  Google Scholar 

  14. Loiseau, A., Launois, P., Petit, P., Roche, S. & Salvetat, J. P. Understanding Carbon Nanotubes (Springer, 2006).

    Book  Google Scholar 

  15. Ando, T. Excitons in carbon nanotubes. J. Phys. Soc. Jpn 66, 1066–1073 (1997).

    Article  CAS  Google Scholar 

  16. Kane, C. L. & Mele, E. J. Ratio problem in single carbon nanotube fluorescence spectroscopy. Phys. Rev. Lett. 90, 207401 (2003).

    Article  CAS  Google Scholar 

  17. Dresselhaus, M. S., Dresselhaus, G., Saito, R. & Jorio, A. Exciton photophysics of carbon nanotubes. Annu. Rev. Phys. Chem. 58, 719–747 (2007).

    Article  CAS  Google Scholar 

  18. Ando, T. & Seiji, U. Theory of electronic states in carbon nanotubes. Phys. Status Solidi C 6, 173–180 (2009).

    CAS  Google Scholar 

  19. Maultzsch, J. et al. Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Phys. Rev. B 72, 241402(R) (2005).

    Article  Google Scholar 

  20. Kane, C. L. & Mele, E. J. Electron interactions and scaling relations for optical excitations in carbon nanotubes. Phys. Rev. Lett. 93, 197402 (2004).

    Article  CAS  Google Scholar 

  21. Jiang, J. et al. Chirality dependence of exciton effects in single-wall carbon nanotubes: Tight-binding model. Phys. Rev. B 75, 035407 (2007).

    Article  Google Scholar 

  22. Ouyang, M., Huang, J. L., Cheung, C. L. & Lieber, C. M. Energy gaps in ‘metallic’ single-walled carbon nanotubes. Science 292, 702–705 (2001).

    Article  CAS  Google Scholar 

  23. Venema, L. C. et al. Spatially resolved scanning tunneling spectroscopy on single-walled carbon nanotubes. Phys. Rev. B 62, 5238–5244 (2000).

    Article  CAS  Google Scholar 

  24. Hesper, R., Tjeng, L. H. & Sawatzky, G. A. Strongly reduced band gap in a correlated insulator in close proximity to a metal. Europhys. Lett. 40, 177–182 (1997).

    Article  CAS  Google Scholar 

  25. Lu, X., Grobis, M., Khoo, K. H., Louie, S. G. & Crommie, M. F. Charge transfer and screening in individual C60 molecules on metal substrates: A scanning tunneling spectroscopy and theoretical study. Phys. Rev. B 70, 115418 (2004).

    Article  Google Scholar 

  26. Sau, J. D., Neaton, J. B., Choi, H. J., Louie, S. G. & Cohen, M. L. Electronic energy levels of weakly coupled nanostructures: C60-metal interfaces. Phys. Rev. Lett. 101, 026804 (2008).

    Article  Google Scholar 

  27. Ando, T. Excitons in carbon nanotubes revisited: Dependence on diameter, Aharonov–Bohm flux, and strain. J. Phys. Soc. Jpn 73, 3351–3363 (2004).

    Article  CAS  Google Scholar 

  28. Fleurier, R., Lauret, J. S., Lopez, U. & Loiseau, A. Transmission electron microscopy and UV–vis–IR spectroscopy analysis of the diameter sorting of carbon nanotubes by gradient density ultracentrifugation. Adv. Funct. Mater. 19, 2219–2223 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study has been supported by the European Contract STREP ‘BCN’ Nanotubes 30007654-OTP25763, by a grant from CNano IdF, by the SESAME project and by the ANR project ‘CEDONA’ of the PNANO programme (ANR-07-NANO-007_02). We gratefully acknowledge L. Henrard and P. Hermet for fruitful discussions and D. Pigache and J.-L. Cochon for the synthesis of the sample.

Author information

Authors and Affiliations

Authors

Contributions

H.L. carried out TEM experiments and diameter distribution analysis, H.L., J.L., C.C. and V.R. carried out STM experiments and data analysis, Y.G. gave conceptual advice, J.-S.L. carried out optical experiments, J.L. and F.D. worked on the many-body effects analysis, A.L. and S.R. conceived the project and all authors discussed the results and implications and contributed to the writing of the manuscript.

Corresponding author

Correspondence to S. Rousset.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 192 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, H., Lagoute, J., Repain, V. et al. Many-body effects in electronic bandgaps of carbon nanotubes measured by scanning tunnelling spectroscopy. Nature Mater 9, 235–238 (2010). https://doi.org/10.1038/nmat2624

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2624

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing